
Optimal sensor deception in stochastic environments with partial
observability to mislead a robot to a decoy goal

Hazhar Rahmani Mukulika Ghosh Syed Md Hasnayeen

Abstract— Deception is a common strategy adapted by au-
tonomous systems in adversarial settings. Existing deception
methods primarily focus on increasing opacity or misdirecting
agents away from their goal or itinerary. In this work, we
propose a deception problem aiming to mislead the robot
towards a decoy goal through altering sensor events under
a constrained budget of alteration. The environment along
with the robot’s interaction with it is modeled as a Partially
Observable Markov Decision Process (POMDP), and the robot’s
action selection is governed by a Finite State Controller (FSC).
Given a constrained budget for sensor event modifications, the
objective is to compute a sensor alteration that maximizes the
probability of the robot reaching a decoy goal. We establish the
computational hardness of the problem by a reduction from the
0/1 Knapsack problem and propose a Mixed Integer Linear
Programming (MILP) formulation to compute optimal decep-
tion strategies. We show the efficacy of our MILP formulation
via a sequence of experiments.

I. INTRODUCTION

Deception is a common adversarial strategy that can
involve concealing intent from adversarial agents [12], [15]
or misleading them through sensor manipulation [17], [21].
This paper focuses on the latter, where an autonomous agent
or robot is deliberately misled toward predetermined decoy
goals via systematic sensor alterations. Since modifying sen-
sor information incurs a cost, the system optimizes deception
within a constrained budget. Unlike existing approaches
that focus on optimizing the placement of decoy goals or
honeypots [2], [14], [18], our approach assumes a fixed
set of decoy goals and achieves deception by optimally
swapping sensor observations (readings). This method has
broad applications in autonomous system planning, including
security applications and adversarial environments in multi-
agent systems. For example, consider a strategic defense
scenario in an environment shown in Fig. 1. An intruder
ground robot, attempts to infiltrate a protected area located in
upper right cell, while avoiding detection. The environment
contains 6 beacons, S1 to S6, producing distinct colors,
which the ground robot relies on for localization and plan-
ning to move toward the protected area. The robot dynamic
has stochastically, and so, when it does one of the actions
North, East, South, and West, its actuators guarantee with
a probability less than 1 that they will move the robot to
the intended cell. The defense system knows the strategy
the robot uses for action selection. Accordingly, it alters the
beacon identities by spoofing them, effectively misdirecting
the robot away from the ammunition area and towards the

The authors are with the Dept. of Computer Science, Missouri
State University, Springfield, MO, USA. {hrahmani, mghosh,
sh3739s}@missouristate.edu

0

0

1

1

2

2

3

3

4

4

s0

s1

s2

s3

s4

s5

s6

X

G

Fig. 1: An example of sensor deception. The agent at bottom
left cell is tasked to navigate to the goal at the top right cell.
Because of photoelasticity in the robot’s dynamic, the current
state, the position of the robot, is not observable to the robot.
The range sensors provide partial observability. The system
will alter the sensors to mislead the agent to the decoy goal
state in the middle cell containing the security.

middle cell containing a guard tower. This spoofing is not
online and instead is offline and it is performed only one
time, before the agent’s execution. It can simply swap the
colors produced by different beacons. The cost of beacon
spoofing can include energy expenditure or the risk posed to
authorized agents, and hence, there is a limited budget for
spoofing. In this paper, we answer the question that in this
kind of scenarios, how we alter or swap the colors produced
by some beacons to maximize the probability of directing
the intruder toward the decoy goal. Our problem can also
help identify vulnerabilities in a sensor network, where a
malicious agent manipulates sensors to mislead the system
to an unsafe or hazardous state.

In this paper, we consider the sensor deception problem
in a stochastic environment by modeling the interaction be-
tween an autonomous agent (or robot) and its environment as
a Partially Observable Markov Decision Process (POMDP).
The robot lacks direct knowledge of its true state and relies
on sensor-generated observations. Those observations can
be strategically altered by an agent at a cost. The robot
selects actions based on its current observations and memory,
which we model as a Finite State Controller (FSC) [1]. The
objective is to maximize the probability of misleading the
robot to the predetermined decoy goal when it has limited
capability of modifying the sensor readings. We establish
the computational hardness of our problem by a reduction
from the 0/1 Knapsack problem. Furthermore, we formulate
the optimal sensor deception problem as a Mixed Integer

Linear Programming (MILP) model, offering a structured
and scalable solution for synthesizing deception strategies
that achieve optimal cost-efficiency.

The contributions of this paper are summarized as follows:
• A novel deception problem formulation, which aims to

compute a sensor alteration maximizing the probability
of misdirecting a robot two a predetermined decoy goal,
under a limited cost budget of sensor alteration.

• The NP-hardness of our sensor alteration problem,
proved by reduction from Knapsack problem.

• A scalable MILP-based solution of the sensor alteration
problem.

After discussing related work in Section II, we provide
basic definitions and present our problem formulation in
Section III. In Section IV, we present verification algorithm.
In Section V, we present our NP-hardness result, and in
Section VI, we provide our MILP formulation. Section VII
reports results of our experiments, and Section VIII, we
conclude the paper and draw future research directions.

II. RELATED WORK

Deception of adversary or opponent by altering sensor
information has been achieved in form of opacity [7], [9]
and deceptive control [18], [22]. Deceptive control is im-
plemented through adding, removal or altering sensors or
observations. In this paper, we focus on deception planning.
Optimal placement of decoy targets is considered in [14],
[18] with linear program solution to optimize deception
with [14] utilizing probabilistic attack graphs compared to
deterministic one in [18]. Goal obfuscation considers hiding
true goal among fake goals to implement deception [4],
[12]. Savas et. al. use Linear Programming to maximize
adversary teams’ deception about its true goal while ensuring
the highest probability of achieving its true goal in [20].
The observer’s predictions are formulated as probability
distributions over true goals, guided by the maximum entropy
principle. Game theory based approaches have been used in
deploying decoys for deception in hypergames [10], [11],
[13]. Unlike the approaches mentioned above, we model a
sensor deception by the alterations of sensors to lead the
agent to a finite set of predetermined decoy targets while
maintaining the cost incurred by sensor alterations under a
limited budget.

Markov Decision Process (MDP) has been widely used
in deceptive planning [5], [8], [15], [20]. Karabag et al. [8]
explore deception by an agent through partial observability
of the supervisor, modeling the environment as an MDP. The
agent optimizes the generation of a deceptive policy, quan-
tifying deception using Kullback-Leibler (KL) divergence
to ensure that the agent’s actions remain indistinguishable
from the supervisor’s expectations while achieving its covert
objective. In [19], the method is extended to team deception,
where each agent is modeled as an MDP, and a central-
ized deceptive policy synthesis is applied while maintaining
decentralized execution. Ma et al. [15] investigate covert
deception planning in a stochastic environment, modeled as
an MDP, where the agent aims to maximize the discounted

total reward while maintaining covert behavior. They demon-
strate that finite-memory policies can outperform Markovian
policies in this constrained MDP framework and develop a
primal-dual gradient-based method for synthesizing optimal
and covert Markov policies. In our approach, we model the
interaction of the deceived agent with the environment as
partially observable Markov Decision process (POMDP) and
the selection of action by the agent as finite state controller.

Another closely related work by Meira-Góes et al. in [16]
investigates sensor manipulation in a stochastic environment
by modeling the system as a probabilistic automaton. The au-
thors leverage concepts from stochastic games to synthesize
an attack policy that maximizes the likelihood of the system
being in an unsafe state. In [17], the authors extend their
work by modeling the interaction between the attacker and
the system as an MDP, and also incorporating penalties into
the attack model as a second problem. While these work
maximizes the unsafety of the system, our proposed work
focuses on sensor manipulation to maximize the likelihood
of the agent landing in decoy state.

III. DEFINITIONS AND PROBLEM STATEMENT

To model the interaction of the robot with the environment
we use a discrete structure defined as follows.

Definition 1: A partially observable Markov decision pro-
cess (POMDP) is a tuple M = (S,A,P, s0,Ω, O) in which

• S is a finite set of states,
• A is a finite set of actions,
• P : S × A × S → [0, 1] is a transition probability

function such that for each s, s′ ∈ S, a ∈ A, P(s, a, s′)
is the probability that the system transitions to state
s′ by doing action a at state s, and it holds that
Σs′∈SP(s, a, s′) = 1 for all s ∈ S and a ∈ A,

• s0 is the initial state,
• Ω is a finite set of observations,
• O : S → Ω is the observation function such that for

each state s ∈ S, O(s) is the observation the system
emits when it enters s.

A POMDP defines how the state of the system changes
in response to the robot’s actions. At each step, the robot
receives an observation produced by the system based on the
current state. Since the same observation could be produced
by multiple states, the robot cannot directly observe the
current state. The robot’s action selection process is governed
by a finite-state controller (FSC), formally defined as follows.

Definition 2: A finite-state controller for a POMDP M =
(S,A,P, s0,Ω, O) is a tuple C = (N,n0, γ, δ) in which

• N is a finite set of memory nodes,
• n0 is the initial node,
• γ : N × Ω → A is the action selection function where

for each node n ∈ N and observation o ∈ Ω, it chooses
an action γ(n, o) when the controller is in state n and
the robot has perceived an observation o,

• δ : N ×Ω → N is the memory update function, telling
the controller to transition to node δ(n, o) by receiving
observation o at node n.

The robot uses the finite-state controller C = (N,n0, γ, δ)
to choose actions at every time-step. At the initial time step
0, the POMDP is in state s0 and the controller has memory
n0. Because of partial observability, the robot generally
does not explicitly know the current state of the POMDP.
However, based on the perceived observation associated with
the current state, it can reduce uncertainty about the state
of the POMDP. At each time-step k ≥ 0, the controller
generates action ak = γ(nk, O(sk)), which must be executed
by the robot. Upon executing this action, the POMDP
transitions from state sk to sk+1 at time step k + 1. When
the POMDP enters sk+1, an observation O(sk+1) is emitted.
State sk+1 is produced randomly from every state s′ for
which P(sk, ak, s

′) > 0.
In this paper, we study a problem in which the sensors

have been attacked by an adversarial agent, causing them to
produce incorrect observations. The purpose of the sensor
attack is to mislead the robot into a decoy goal. We consider
only alteration attacks.

Definition 3: [Observation alteration] An observation al-
teration is a function α : Ω → Ω where for each o ∈ Ω, the
robot receives observation α(o) instead of o whenever it is
supposed to receive o.

Consider that the sensor attack is in a sense an offline attack
rather than an online attack, meaning that it is performed
before any system execution. Each attack incurs a cost,
defined by a function: Given the observation alteration cost
function c : Ω × Ω → R≥0, where for each o1, o2 ∈ Ω,
c(o1, o2) is the cost of altering observation o1 to observation
o2.

Let A be the set of all sensor alterations defined over
Ω. The cost associated with a sensor alteration is identified
using function C : A → R≥0, assigning cost C(α) =∑

o∈Ω c(o, α(o)) to sensor alteration α.
The adversary’s objective is to make an observation al-

teration that maximizes the probability of misleading the
agent to the decoy while ensuring the cost of the observation
alteration is no greater than a cost budget.

Problem: Optimal Sensor Alteration for Decoy Goal
Misleading (OSA DGM)

Input: A POMDP M = (S, α,P, s0,Ω, O), a decoy goal
SD ⊆ S, a reference controller C = (N,n0, γ, δ),
a cost alteration function c, and a cost budget B ∈
R≥0.

Output: A sensor alteration α with cost at most B for
which, Prreach(SD, α) is maximum.

IV. MISLEADING PROBABILITY OF A SENSOR
ALTERATION

In this section, we introduce a product automaton con-
struction, which can be used for a hardness result presented
in the next section, and for computing the probability of
misleading the robot to a decoy goal on a sensor alteration.

Definition 4: The product of POMDP M =
(S,A,P, s0,Ω, O) and finite-state controller C =

(N,n0, γ, δ) under sensor alteration α : Ω → Ω for
decoy goal SD ⊆ S is a tuple P = (Q, q0,T, QG) in which

• Q = S ×N is the state space,
• q0 = (s0, n0) is the initial state,
• QD = SD ×N is the set of goal states, and
• T : Q×Q → [0, 1] is the transition function such that

for each states (s, n), (s′, n′) ∈ Q,

T((s, n), (s′, n′)) =


P(s, s′, a) if δ(n, α(O(s))) = n′

and
γ(n, α(O(s))) = a

0 otherwise.
(1)

Note that this automaton is, in fact, a goal Markov chain—a
Markov chain with the set of goal states QD. Each state of
it is a tuple (s, n) in which s is the current state of the world
and n is current memory node of the controller. The system
produces observation O(s) and the attacker alters this sensor
reading to α(O(s)). The robot receives the modified observa-
tion α(O(s)) and uses it to select action a = γ(n, α(O(s))),
generated by the controller. The controller then transitions to
node n′ = γ(n, α(O(s))), and the POMDP transitions from
state s to a state s′ stochastically, based on P(s, n, .).

To compute the probability of reaching the decoy, one can
introduce a variable zq for each q ∈ Q, and set zq = 1 if
q ∈ QD, and otherwise,

zq =
∑
q′∈Q

T(q, q′)zq′ .

By solving this Bellman equation using standard methods,
such as the method in Chapter 10 of [3], the probability of
misleading the robot to the decoy goal is given by zq0 .

V. HARDNESS RESULTS

In this section, we present our hardness result.
First, we consider the decision variant of our problem.

Decision Problem: Optimal Sensor Alteration for Decoy
Goal Misleading (OSA DGM-DEC)

Input: A POMDP M = (S,A,P, s0,Ω, O), a decoy
goal SD ⊆ S, a reference controller C =
(N,n0, γ, δ), a cost alteration function c, a cost
budget B ∈ R≥0, and a real number r ∈ R≥0.

Output: Yes, if there exists a sensor alteration α such that
C(α) ≤ B and Prreach(SD, α) ≥ r; and No,
otherwise.

Lemma 1: OSA DGM-DEC ∈ NP.

Proof: Let x : ⟨M := (S,A,P, s0,Ω, O), C :=
(N,n0, γ, δ), SD, B, r⟩ be an instance of OSA DGM-DEC.
We assume the sensor alteration α is given as the certificate.
We need to prove that in polynomial time to the size of x
we can verify if C(α) ≤ B and Prreach(SD, α) ≥ r.

We construct P using the construction in Definition 4.
The running time of this construction is O(|S||N ||A||Ω| +
|S|2|N |2), which is polynomial to the size x. Then, it takes a

time polynomial to the size of P , to compute the probability
of reaching QG in P , which represented Prreach(SD, α).
Trivially, checking whether Prreach(SD, α) ≥ r and C(α) ≤
B takes a polynomial time, and this completes the proof.

Next, we consider a well known problem.

Decision Problem: 0/1 Knapsack Problem (0/1-
KNAPSACK-DEC)

Input: n items with weights W = [w1, w2, · · · , wn] and
values V = [v1, v2, · · · , vn], a knapsack with
capacity P , a positive real number L ≥ 0.

Output: Yes if there is a set I ⊆ {1, 2, · · · , n} such
that

∑
i∈I wi ≤ P and

∑
i∈I vi ≥ L, and No

otherwise.

In words, this problem asks whether the knapsack can be
filled, either fully or partially, with a subset of items whose
total weight is at least L.

Next, we show that our problem is computationally hard.

Theorem 1: OSA DGM-DEC ∈ NP-hard.

Proof: By reduction from the 0/1 Knapsack problem.

Given an instance

x = ⟨W := [w1, · · · , wn], V := [v1, · · · , vn], P, L⟩

of the 0/1-KNAPSACK-DEC problem, we construct an in-
stance

y = ⟨M, SD := {s⊥}, C, c, B, r⟩

of OSA DGM-DEC in which for M = (S,A,P, s0,Ω, O),

• S = {s0}∪{si | i ∈ {1, · · · , n}}∪{s♣}∪{s⊤}∪{s⊥}
• A = {a, b}
• Ω = {o0}∪{oi | i ∈ {1, · · · , n}}∪{o♣}∪{o⊤}∪{o⊥}
• for each j ∈ {0} ∪ {1, · · · , n} ∪ {⊥,⊤,♣},

O(sj) = oj ,

• for each s, s′ ∈ S and t ∈ A,

P(s, t, s′) =

vi
2
∑n

j=1 vj
if (s = s0, t = a, s′ = si) for 1 ≤ i ≤ n

1
2 if (s = s0, t = a, s′ = s♣)

1 if (s = s0, t = b, s′ = s0)

1 if (s = si, t = a, s′ = s⊤) for 1 ≤ i ≤ n

1 if (s = si, t = b, s′ = s⊥) for 1 ≤ i ≤ n

1 if (s = s♣, t = b, s′ = s⊤)

1 if (s = s♣, t = a, s′ = s⊥)

1 if (s = s⊤, s
′ = s⊤, t ∈ A)

1 if (s = s⊥, s
′ = s⊥, t ∈ A)

0 otherwise

and for C = (N,n0, γ, δ), we have

• N = {n0, n1, n2},

• For each n ∈ N and o ∈ Ω,

γ(n, o) =


a if n = n0, o = o0

a if n = n1, o = oi for 1 ≤ i ≤ n

b otherwise.

• δ is defined as follows: For each n ∈ N and o ∈ Ω,

– δ(n, o) = n1 if n0 and o = o0,
– and otherwise, δ(n, o) = n

• for each n ∈ N and o ∈ Ω,

δ(n, o) =

{
n1 if n = n0, o = o0,

n2 otherwise

SD = {s⊥},

we define c such that for each o, o′ ∈ Ω,

c(o, o′) =


0 if o = o′

wi if o = oi for 1 ≤ i ≤ n, o′ = o♣

∞ otherwise

and we set B = P and r = L
2
∑n

i=1 vi
.

Clearly, this reduction takes a polynomial time, and hence,
we only need to show that the reduction is correct, i.e., 0/1-
KNAPSACK-DEC produces Yes for x iff OSA DGM-DEC
produces Yes for y.

(⇒) Assume that 0/1-KNAPSACK-DEC produces Yes
for x, that is, there exists set I ⊆ {1, · · · , n} such that∑

i∈I wi ≤ P and
∑

i∈I vi ≥ L. We construct the sensor
alteration α such that for each observation o ∈ Ω,

α(o) =

{
a♣ if o = oi for an integer i ∈ I

o otherwise

This means when the system enters any state si for i ∈ I , the
robot is deceived to think it is in s♣, causing the controller
to give action b instead of a to the robot to execute, and
by executing that action, the system enters s⊥. Because s⊥
is reached only by doing action b from the sj’s for j ∈
{1, · · · , n}, the probability of reaching the decoy goal {s⊥}
under sensor alteration α is computed

Prreach(SD, α) =
∑
i∈I

vi
2
∑n

j=1 vj
=

∑
i∈I vi

2
∑n

j=1 vj
.

, and because
∑

i∈I vi ≥ L,

Prreach(SD, α) ≥ L

2
∑n

j=1 vj
= r. (2)

Also,

C(α) =
∑
o∈Ω

c(o, α(o))

=
∑

o∈Ω\{si|i∈I}

c(o, α(o)) +
∑
i∈I

c(oi, α(o))

=
∑

o∈Ω\{si|i∈I}

c(o, o) +
∑
i∈I

c(oi, o♣)

=
∑

o∈Ω\{si|i∈I}

0 +
∑
i∈I

wi

=
∑
i∈I

wi, (3)

and because
∑

i∈I wi ≤ P and that B = P , it holds that
C(α) ≤ B. This combined with (2) implies that OSA DGM-
DEC produces Yes for y.

(⇐) Assume OSA DGM-DEC produces Yes for y,
meaning that, there is a sensor alteration α for which
Prreach(SD, α) ≥ r and that C(α) ≤ B. State s⊥ can be
reached either by doing action b at the si’s for i ∈ {1, · · · , n}
or by doing a at s♣. The cost of altering o♣ to any other
observation is ∞. Therefore, if the system enters s♣, it will
certainly perform action b, causing it to transition to s⊤
rather than s⊥ in the next time step. Thus, s⊥ cannot be
reached from s♣. The system enters s⊥ from a state si for
i ∈ {1, · · · , n} only when oi is mapped to o♣ by α. Because
Prreach(SD, α) ≥= r, there must be a set I ⊆ such that
among all the oi’s, only those for which i ∈ I , it has been set
α(oi) = o♣. By assumption C(α) ≤ B, and since

∑
i∈I wi

by (3), and that B = P , it holds that
∑

i∈I wi ≤ P . Also,
because

Prreach(SD, α) =
∑
i∈I

vi∑n
j=1 wj

≥ r =
L∑n

j=1 wj
, (4)

it holds that
∑

i∈I vi ≥ L. This combined with that∑
i∈I wi ≤ P proves that I yields Yes for instance x of

0/1-KNAPSACK-DEC.

Therefore, the following result is implied from Lemma 1
and Theorem 1.

Theorem 2: OSA DGM-DEC ∈ NP-complete.

Proof: Combine Lemma 1 and Theorem 1.

Corollary 1: OSA DGM ∈ NP-hard.

Hence, under the assumption that P ̸= NP, we cannot
find in polynomial time, a sensor alteration with a given
cost budget that maximizes the probability of misleading the
robot to the decoy goal.

VI. OSA DGM VIA MIXED INTEGER LINEAR
PROGRAMMING

In this section, we provide a mixed integer linear pro-
gramming approach to solve the optimal sensor alteration
problem.

The idea of our programming formulation is to have
binary variables by assigning values to which, a sensor

1

20

2

30

3

40

4

50

5

60

K
na

ps
ac

k
w

ith
ca

pa
ci

ty
7

(a)

120

230

450

(b)

s0

s3s2s1 s4 s5 s♣

s⊤ s⊥

20
400

30
400

40
400

50
400

60
400

200
400

(c)

n0

n1

n2

o0 : a

o1 : a
o2 : a
o3 : a

o4 : a
o5 : a
o♣ : b

(d)

Fig. 2: (a) An instance of the 0/1 knapsack problem. There
are 5 items with weights W = [1, 2, 3, 4, 5] and values
V = [20, 30, 40, 50, 60]. The capacity of the knapsack is
7 (b) Optimal solution to the instance of the 0/1 knapsack
problem. The knapsack’s total weight is 7, and the total value
is 100. (c) The POMDP of the instance of our problem, the
OSA DGM-DEC problem, constructed by our reduction for
the instance of the 0/1-KNAPSACK-DEC in Part (a) of this
figure. The solid edges are transitions that take place with
action a and the dashed arrows are transitions for action b.
All the transitions missing probability labels, use probability
1. We omitted those labels to reduce visual clutter. States s⊥
and s⊤ are absorbing states. Their outgoing transitions are
omitted to reduce visual clutter. (d) The finite-state controller
of the instance of our problem constructed by our reduction
for the instance of the 0/1-KNAPSACK-DEC in Part (a) of
this figure. All the missing transitions enters n2 and choose
action b.

alteration is synthesized, and then to have certain variables
each representing the probability of reaching to the decoy
goal by the sensor alteration from a state of a product
automaton. Each state of this product automaton is a tuple
(s, n, o) representing a situation when the POMDP is in
state s, current memory node of the controller is n, and
observation O(s) is altered to o by the sensor alteration.

More precisely, we introduce the following variables:
• A binary variable xo,o′ for each o, o′ ∈ Ω: Variable xo,o′

will receive 1 iff observation o is altered to observation
o′ by the sensor alteration.

• A continuous variables zs,n,o ∈ [0, 1] for each state
s ∈ S, node n ∈ N , and observation o ∈ Ω: The
value of zs,n,o will be the probability of misleading the
robot to the decoy goal when the system is in state s,
the controller is in node n, and the observation emitted
when the system is in s, O(s), is altered to o under the
sensor alteration.

Using these variables, we make the following program-
ming model.

Maximize: zs0,n0,O(s0) (5)
Subject to:

• ∑
o,o′∈Ω

xo,o′ · c(o, o′) ≤ B (6)

•
xO(s0),O(s0) = 1 (7)

• For each s ∈ SD, n ∈ N , and o ∈ Ω,
zs,n,o = xO(s),o (8)

• For each s ∈ S \ SD, n ∈ N , and o ∈ Ω

zs,n,o =
∑
s′∈S,
n′∈N,
o′∈Ω

xO(s),oT((s, n, o), (s′, n′, o′))zs′,n′,o′

(9)
• For each o, o′ ∈ Ω,

xo,o′ ∈ {0, 1} (10)
• For each s ∈ S, n ∈ N , and o ∈ Ω,

zs,n,o ∈ [0, 1] (11)

The objective (5) is to maximize the probability of mis-
leading the robot to the decoy goal SD. Constraint (6)
ensures that the cost of the alteration is no greater than the
cost budget B. Constraint (7) asserts that the observation
associated with the initial state of the POMDP cannot be
altered. This is because the robot know that any execution of
the POMDP starts from s0. Constraints (8) sets the base case
for the Bellman equation by setting to be 1, the probability
of reaching the decoy for a state (s, n, o) where s is a decoy
state and observation O(s) is altered to o by the sensor
alteration. Constraints (16) simply implement the Bellman
equation.

This programming would be an MILP if Constraints
(16) were linear. Note that although T((s, n, o), (s′, n′, o′)),
because both xO(s),o and zs′,n′,o′ variables, the product of
these three is not a linear term. Thus, we need to linear these
constraints.

To linearize them, we first introduce a continuous variable
ls,o,s′,n′,o′ for each s, s′ ∈ S, n, n′ ∈ N , and o, o′ ∈ Ω.
The range of this variable is [0, 1]. Then, we introduce the
following additional constraints to make ls,o,s′,n′,o′ receive
value xO(s),o · zs′,n′,o′ .

• For each s, s′ ∈ S, n′ ∈ N , and o, o′ ∈ Ω,
ls,o,s′,n′,o′ ≥ 0 (12)

ls,o,s′,n′,o′ ≤ zs′,n′,o′ (13)

ls,o,s′,n′,o′ ≤ xO(s),o (14)

ls,o,s′,n′,o′ ≥zs′,n′,o′ − (1− xO(s),o) (15)

Finally, we replace Constraints 16 with the following
constraints:

• For each s ∈ S \ SD, n ∈ N , and o ∈ Ω

zs,n,o =
∑
s′∈S,
n∈N,
o′∈Ω

T((s, n, o), (s′, n′, o′)) · ls,o,s′,n′,o′

(16)

This MILP is complete, but needs to be improved. Note
that given a pair of state s, s′ ∈ S, the MILP introduces
all variables ls,·,s′,·,· even if P(s, a, s′) = 0 for all a ∈ A.
We improve the MILP by introducing those variables only
when for at least an action a ∈ A, P(s, a, s′) > 0. , but if
for all a ∈ A, it holds that P(s, a, s′) = 0, then we do not
have to even create the variables ls,·,s′,·,· and the constrains
involving them.

This MILP formulation not only can be used for com-
puting optimal solutions to OSA DGM but also for comput-
ing sub-optimal solutions for problem instances for which
optimal solutions cannot be computed under limited time
budgets. The presented MILP can be directly solved by a
variety of highly-optimized MILP solvers.

VII. CASE STUDIES

In section, we present results of our implementation of the
MILP for several instances of the OSA DGM problem. We
implemented our program in Python and used the Python
interface of Gorubi [6] to solve the MILP instances. All
experiments were performed on a system with Windows 11,
Core i-9 (2000 Mhz) processor, and 32GB memory.

A. The Reduction Example

Our implementation for the OSA DGM instance in the
reduction, Figure 2c, compute the sensor alteration in which

o4 → o♣, o2 → o♣, o1 → o♣.

The MILP for this instance had 59, 373 variables and
236, 477 constraints. It took 0.099 for the solver to find an
optimal solution. This experiment verifies the correctness of
our algorithm.

B. Grid Environment

This case study considers a robot operating in a n × n
grid environment. An instance where n = 5, is shown in
Figure 3. The robot is tasked with delivering an item from
the starting position (0, 0) to the goal position (n−1, n−1).
The robot has four actions: N , S, E, W , which respectively
command the robot’s actuators to move to the cell in the
North, South, East, and West side of its’ current position.
The robot’s dynamic is stochastic: The actuators of the robot
guarantee that they move the robot to the intended cell
specified by the action command with probability 0.8. The
probability that the robot’s actuators move the robot in either
of the two unintended directions orthogonal to its current

cell is 0.1 each, provided movement in both directions is
possible. Otherwise, if only one unintended direction is
possible (for example, when robot is in one of the corner
cells of the environment), the probability of movement in
that direction is 0.2. Figure 3(bottom) illustrate these two
situations. Generally, the robot is unaware about its own
position, i.e., the current state is not observable, but using
7 range sensors s0 through s6, it has partial observability
of the current state of the world. Each sensor si produces
an observation oi when the robot enters a cell guarded by
si. Therefore, there are 7 observations, each produced by
a sensor, along with one additional observation, which we
denoted b, produced by the cells that are not guarded by any
sensors. With these in mind, the problem is formulated as
a POMDP, which has a state for each potential position of
the robot—each cell in the grid. Cell (2, 2), which in the
figure is denoted by X in red, is hazardous, and a policy
governing the robot movement should help the robot to not
enter that cell. In the POMDP, the states corresponding to
the goal and the hazardous position are absorbing—states
that have self-loops for all actions.

The robot uses the finite-state controller shown in Figure 3.
The controller tells the robot to do action E when the robot
receives any of the observations o0, o1, o4, and o6, and to
do action N when any of the observation o2, o3, and o4, are
received. The action produced for the blank observation, b,
will be E if the last non-blank observation was any of the
observations o0, o1, o4, and o3, and otherwise, it will be N .

Our implementation indicated that the probability of reach-
ing the goal position using this controller without sensor
alteration (i.e., a sensor alteration with a cost budget 0) for
the instance with n = 5 is 0.915 and the probability of
entering the hazardous position is 0.085. The purpose of the
attacker is to mislead the robot to enter the hazardous state,
and hence, the decoy goal contains only that state. For a
cost budget 1, our implementation of the MILP formulation
computed the sensor alteration that changes o1 to o3. This is
consistent with the problem instance because altering o1 to o3
maximizes the likelihood of misleading the robot into enter-
ing the decoy when only one observation can be altered. Our
program indicated that the probability of reaching the decoy
under this sensor alteration is 0.720, which is significantly
higher than 0.085, the probability of misleading without a
sensor attack. To interpret the impact of this sensor alteration,
consider that under this sensor alteration, the probability of
following the path (0, 0) → (1, 0) → (2, 0) → (2, 1) →
(2, 2) → (2, 2), alone is 0.84 = 0.4096.

We repeated the experiment for other cost budgets greater
than 1. For a cost budget of 2, our implementation computed
to do the alteration o1 → o5 and o2 → o0. This is consistent
with the positions of s1 and s2 and the action produced
for o1, o5, o2, and o0 by the controller. The probability of
misleading the robot to the decoy under this sensor alteration
is 0.861. For a cost budget of 3, our algorithm decided
to alter o6 to o2, along with o1 → o5 and o2 → o0.
Considering the stochastic nature of the robot’s dynamics
and controller, altering o6 affects the robot’s decision by

0

0

1

1

2

2

3

3

4

4

s0

s1

s2

s3

s4

s5

s6

X

G

n0

n1

n2

x ∈ {o0, b, o1, o4, o6}
y ∈ {o2, o3, o5}

x : E

y : N

x : E

y : N

x : E

x : E

0.8

0.10.1

0.2

0.8

Fig. 3: Top-left) A grid environment guarded by 7 range
sensors s0 through s7. The robot is tasked to deliver an
item from the starting location (0, 0) to the goal location,
(4, 4). Cell (2, 2) is hazardous and must be avoided. That cell
considered a decoy and the attacker’s purpose is to mislead
the robot to that cell. Top-right) A finite-state controller
the robot uses. Bottom-left) The robot’s dynamic when it
performs action N, standing for going to North. Bottom-
right) The robot’s dynamic when it performs action E,
standing for going to East.

causing it to take action N instead of E upon observing
o6. As a result, the robot may be directed to move through
the blank cells to the left and bottom-left of s6 before
entering the hazardous state, which could be reached by an
infinite number of paths. The probability of following those
paths is

∑∞
n=1 0.001(0.01)

n ≈ 0.00101. Our implementation
indicated that under the computed sensor alteration, the
probability of reaching the decoy is 0.862, rounded to three
decimal places. For a cost budget 4, the computed sensor
alteration included o2 → o6, o5 → o1, o1 → o2, and
o6 → o3. Under this alteration, the probability of reaching
the decoy was 0.864 (rounded up). This probability remained
the same for cost budgets greater than 4. In each case, the
actions assigned by the computed sensor alteration for the
observations produced by sensors s4 and s3 did not changed.
This is reasonable because for example, there is no advantage
in choosing action N instead of E upon observing o4.

We performed a scalability experiment by creating 6
instances of an n× n grid for n ∈ {5, 15, 25, 35, 45}. Each
instance maintained the same topology as the case with
n = 5, shown in Figure 3, the same number of sensors
as and the same sensor range sizes. For each we measured
the number variables of the MILP, the number of constraints
of the MILP, the time to construct the MILP, and the time
to solve the MILP. Results of this experiment are shown in
Figure 4. As expected, both computation and execution times

were increased as the size of the grid increased.

20 40
0

0.5

1

1.5

·106

n

N
um

.o
f

V
ar

ia
bl

es

20 40
0

2

4

6

·106

n

N
um

.o
f

C
on

st
ra

in
ts

20 40
0

50

100

n

C
on

st
r.

Ti
m

e
(s

ec
on

ds
)

20 40
0

20

40

n

E
xe

c.
Ti

m
e

(s
ec

on
ds

)

Fig. 4: Results of our scalability experiment for grids similar
to the grid in Figure 3a of size n×n, n ∈ {5, 15, 25, 35, 45}.
Note that for the top two graphs, the values on the y-axis
are in millions (e.g., the instance for n = 45 has more than
1.6 million variables and more than 6.2 million constraints).

VIII. CONCLUSION

In this paper, we studied a sensor deception problem the
aim of which is to find a sensor alteration that can maximize
the probability of misleading an agent to a predetermined
decoy goal, under limited capability for sensor alteration.
The environment is modeled by a POMDP and the agent’s
actions are governed by a Finite State Controller (FSC).
We proved that our problem is NP-hard, and provided an
algorithm based on MILP. We showed through experiments
that our algorithm is capable of computing optimal solutions
for problems of moderate size. Future work can focus on
improving the MILP or introducing a new one with less
variables and constraints. The standard techniques to deal
with NP-hard problems, such as introducing hueristic and
approximate solutions, as wells as identifying instances that
can be solved in polynomial time, can be considered for
future work. Also, it might be useful to study the problem
for more general kinds of models and strategies.

REFERENCES

[1] M. Ahmadi, R. Sharan, and J. W. Burdick, “Stochastic finite
state control of pomdps with ltl specifications,” arXiv preprint
arXiv:2001.07679, 2020.

[2] A. H. Anwar, C. A. Kamhoua, N. O. Leslie, and C. Kiekintveld,
“Honeypot allocation for cyber deception under uncertainty,” IEEE
Transactions on Network and Service Management, vol. 19, no. 3, pp.
3438–3452, 2022.

[3] C. Baier and J.-P. Katoen, Principles of model checking, 2008.
[4] S. Bernardini, F. Fagnani, S. Franco et al., “An optimization approach

to robust goal obfuscation,” in PROCEEDINGS-INTERNATIONAL
CONFERENCE ON PRINCIPLES OF KNOWLEDGE REPRESENTA-
TION AND REASONING, vol. 1. International Joint Conference on
Artificial Intelligence (IJCAI), 2020, pp. 118–128.

[5] S. Chen, Y. Savas, M. O. Karabag, B. M. Sadler, and U. Topcu, “De-
ceptive planning for resource allocation,” in 2024 American Control
Conference (ACC). IEEE, 2024, pp. 4188–4195.

[6] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2024. [Online]. Available: https://www.gurobi.com

[7] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete
event systems opacity: Models, validation, and quantification,”
Annual Reviews in Control, vol. 41, pp. 135–146, 2016.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1367578816300189

[8] M. O. Karabag, M. Ornik, and U. Topcu, “Exploiting partial ob-
servability for optimal deception,” IEEE Transactions on Automatic
Control, vol. 68, no. 7, pp. 4443–4450, 2023.

[9] C. Keroglou and C. N. Hadjicostis, “Probabilistic system opacity
in discrete event systems,” in 2016 13th International Workshop on
Discrete Event Systems (WODES), 2016, pp. 379–384.

[10] A. N. Kulkarni, J. Fu, H. Luo, C. A. Kamhoua, and N. O.
Leslie, “Decoy allocation games on graphs with temporal logic
objectives,” in Decision and Game Theory for Security: 11th
International Conference, GameSec 2020, College Park, MD,
USA, October 28–30, 2020, Proceedings. Berlin, Heidelberg:
Springer-Verlag, 2020, p. 168–187. [Online]. Available: https:
//doi.org/10.1007/978-3-030-64793-3 9

[11] A. N. Kulkarni, H. Luo, N. O. Leslie, C. A. Kamhoua, and J. Fu,
“Deceptive labeling: Hypergames on graphs for stealthy deception,”
IEEE Control Systems Letters, vol. 5, no. 3, pp. 977–982, 2021.

[12] A. Kulkarni, S. Srivastava, and S. Kambhampati, “Signaling friends
and head-faking enemies simultaneously: Balancing goal obfuscation
and goal legibility,” in Proceedings of the 19th International Confer-
ence on Autonomous Agents and MultiAgent Systems, ser. AAMAS
’20. Richland, SC: International Foundation for Autonomous Agents
and Multiagent Systems, 2020, p. 1889–1891.

[13] L. Li, H. Ma, A. N. Kulkarni, and J. Fu, “Dynamic hypergames for
synthesis of deceptive strategies with temporal logic objectives,” IEEE
Transactions on Automation Science and Engineering, vol. 20, no. 1,
pp. 334–345, 2023.

[14] H. Ma, S. Han, C. Kamhoua, and J. Fu, “Optimal resource allocation
for proactive defense with deception in probabilistic attack graphs,”
in Decision and Game Theory for Security, J. Fu, T. Kroupa, and
Y. Hayel, Eds. Cham: Springer Nature Switzerland, 2023, pp. 215–
233.

[15] H. Ma, C. Shi, S. Han, M. R. Dorothy, and J. Fu, “Covert planning
against imperfect observers,” in Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems, ser. AA-
MAS ’24. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2024, p. 1319–1327.

[16] R. Meira-Góes, R. Kwong, and S. Lafortune, “Synthesis of sensor
deception attacks for systems modeled as probabilistic automata,” in
2019 American Control Conference (ACC), 2019, pp. 5620–5626.

[17] R. Meira-Góes, R. H. Kwong, and S. Lafortune, “Synthesis of optimal
multiobjective attack strategies for controlled systems modeled by
probabilistic automata,” IEEE Transactions on Automatic Control,
vol. 67, no. 6, pp. 2873–2888, 2022.

[18] S. Milani, W. Shen, K. S. Chan, S. Venkatesan, N. O. Leslie,
C. Kamhoua, and F. Fang, “Harnessing the power of deception in
attack graph-based security games,” in Decision and Game Theory
for Security, Q. Zhu, J. S. Baras, R. Poovendran, and J. Chen, Eds.
Cham: Springer International Publishing, 2020, pp. 147–167.

[19] C. Probine, M. O. Karabag, and U. Topcu, “A decentralized shotgun
approach for team deception,” in Decision and Game Theory for
Security, A. Sinha, J. Fu, Q. Zhu, and T. Zhang, Eds. Cham: Springer
Nature Switzerland, 2025, pp. 177–197.

[20] Y. Savas, C. K. Verginis, and U. Topcu, “Deceptive decision-making
under uncertainty,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 5, pp. 5332–5340, Jun. 2022. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/20470

[21] R. Su, “Supervisor synthesis to thwart cyber attack with bounded
sensor reading alterations,” Automatica, vol. 94, pp. 35–44, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0005109818301912

[22] Q. Zhang, C. Seatzu, Z. Li, and A. Giua, “Selection of a stealthy and
harmful attack function in discrete event systems,” Scientific Reports,
vol. 12, no. 1, p. 16302, 2022.

https://www.gurobi.com
https://www.sciencedirect.com/science/article/pii/S1367578816300189
https://www.sciencedirect.com/science/article/pii/S1367578816300189
https://doi.org/10.1007/978-3-030-64793-3_9
https://doi.org/10.1007/978-3-030-64793-3_9
https://ojs.aaai.org/index.php/AAAI/article/view/20470
https://www.sciencedirect.com/science/article/pii/S0005109818301912
https://www.sciencedirect.com/science/article/pii/S0005109818301912

	Introduction
	Related Work
	Definitions and Problem Statement
	Misleading probability of a sensor alteration
	Hardness Results
	OSA_DGM via Mixed Integer Linear Programming
	Case Studies
	The Reduction Example
	Grid Environment

	Conclusion
	References

