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Abstract
Human preferences are not always represented via complete linear orders: It is natural to employ partially-ordered
preferences for expressing incomparable outcomes. In this work, we consider decision-making and probabilistic
planning in stochastic systems modeled as Markov decision processes (MDPs), given a partially ordered preference
over a set of temporally extended goals. Specifically, each temporally extended goal is expressed using a formula in
Linear Temporal Logic on Finite Traces (LTLf ). To plan with the partially ordered preference, we introduce order theory
to map a preference over temporal goals to a preference over policies for the MDP. Accordingly, a most preferred policy
under a stochastic ordering induces a stochastic nondominated probability distribution over the finite paths in the MDP.
To synthesize a most preferred policy, our technical approach includes two key steps. In the first step, we develop a
procedure to transform a partially ordered preference over temporal goals into a computational model, called preference
automaton, which is a semi-automaton with a partial order over acceptance conditions. In the second step, we prove
that finding a most preferred policy is equivalent to computing a Pareto-optimal policy in a multi-objective MDP that is
constructed from the original MDP, the preference automaton, and the chosen stochastic ordering relation. Throughout
the paper, we employ running examples to illustrate the proposed preference specification and solution approaches. We
demonstrate the efficacy of our algorithm using these examples, providing detailed analysis, and then discuss several
potential future directions.

1 Introduction

With the rise of artificial intelligence and foundational
models, robotics and other autonomous systems are now
designed to understand and respond to human commands
in natural language, making human-robot interactions more
intuitive and user-friendly. However, human commands
or preferences are not always expressible by a complete
linear order. Preferences may need to admit a partial
order because of (a) Inescapability: An agent has to make
decisions under time limits but with partial information about
preferences because, for example, it lost communication with
the server; and (b) Incommensurability: Some situations,
for instance, the quality of an apple to that of banana,
are fundamentally incomparable since they lack a standard
basis for comparison. These situations motivate the need
for a procedure that translates human preferences into a
computational model for autonomous agents and a planner
that deals with partially ordered preferences in the presence
of all uncertainties in its environment.

In this paper, we consider preference-based planning
(PBP) in stochastic systems modeled as Markov decision
processes (MDPs) with user preferences over temporally
extended goals. Specifically, we express each temporally
extended goal using a formula in Linear Temporal Logic
on Finite Traces (LTLf ). For motivation, consider Figure 1,
which shows a garden that belongs to Bob. He grows three
kinds of flowers: Tulips, daisies, and orchids. To pollinate
the flowers, he uses a bee robot with limited battery. The

Figure 1. a) Bob’s Garden. b) Bob’s preferences on how the
bee robot should perform the task of pollinating the flowers.

environment is uncertain due to the presence of another agent
(bird), the weather, and the robot dynamics.
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Bob has a preference for how the robot should achieve the
task of pollination. Compared to the other types, tulips have
a shorter life span, so Bob considers four outcomes:

(p1) pollinate tulips first, then at least one other flower type;

(p2) pollinate two types of flowers, with the first being
either daisies or orchids;

(p3) pollinate only tulips; and

(p4) pollinate either daisies or orchids or no flowers,

over which, his preference is shown in Figure 1b, using a
preference graph, where the nodes represent the outcomes,
and each directed edge is an improving flip (Santhanam et al.
2016). According to this graph, p1 is the most preferred
outcome, and p4 is the least preferred, while p2 and p3 are
incomparable with each other. As the robot has a limited
battery life and the system is stochastic, it might not achieve
the most preferred outcome with probability one. Thus, we
are interested to answer the following questions: Given all
the uncertainties in the environment, how to compute a
robot’s policy that maximally satisfies Bob’s preference?
How to rank different policies, considering the fact that some
outcomes are incomparable?

Preference-based planning (PBP) enables the system to
decide which goals to satisfy when not all of them can
be achieved (Hastie and Dawes 2010). Even though PBP
has been studied since the early 1950’s, most works on
preference-based temporal planning (c.f. Baier and McIlraith
(2008)) assume that all outcomes are pairwise comparable—
that is, the preference relation is a total order. This
assumption is often strong and, in many cases, unrealistic
(Aumann 1962).

With the emergence of large language models translating
human commands into temporal logic formulas (Chen
et al. 2023; Cosler et al. 2023), it becomes natural to
consider developing PBP algorithms with human preferences
over temporal goals, which are commonly encountered in
robotic planning problems. Setting aside natural language
understanding, PBP has been well-studied for deterministic
systems given both total and partial preferences. See the
survey by Baier and McIlraith (2008). For preferences
over temporal goals in deterministic systems, several
works (Tumova et al. 2013; Wongpiromsarn et al. 2021;
Rahmani and O’Kane 2020, 2019) proposed minimum-
violation planning methods that decide which low-priority
constraints should be violated. Amorese and Lahijanian
(2023) formulate and solve a two-objective optimal planning
problem where one objective is to minimize the total cost of a
plan, while the other aims to optimize the costs of individual
temporal goals ordered by the user preference.

Mehdipour et al. (2021) associate weights with Boolean
and temporal operators in signal temporal logic to
specify the importance of satisfying the sub-formulas
and priority in the timing of satisfaction. This reduces
the PBP problem to that of maximizing the weighted
satisfaction in deterministic dynamical systems. For planning
under this new specification language, Cardona et al.
(2023) propose an algorithm based on mixed linear
integer programming. However, the solutions to PBP for
deterministic systems cannot be applied to stochastic

systems (such as MDPs/POMDPs). This is because in
stochastic systems, even a deterministic policy yields a
distribution over outcomes. Hence, to determine a better
policy, we need comparison of distributions—a task a
deterministic planner cannot do.

Preference-based planning for stochastic systems has been
less studied until recently. Lahijanian and Kwiatkowska
(2016) consider a problem that aims to revise a given
specification to improve the probability of satisfaction of
the specification. They develop an Markov Decision Process
(MDP) planning algorithm that trades off minimizing the
cost of revision and maximizing the probability of satisfying
the revised formula. Cai et al. (2021) focus on planning
with infeasible LTL specifications in MDPs. Their problem’s
objective is to synthesize a policy that, in decreasing order
of importance, 1) provides a desired guarantee to satisfy
the task, 2) satisfies the specifications as much as possible,
and 3) minimizes the implementation cost of the plan. Li
et al. (2020) solve a preference-based probabilistic planning
problem by reducing it to a multi-objective model checking
problem. Li et al. (2023) study a class of preferences over
temporal goals constructed using prioritized conjunction and
ordered disjunction and show that these formulas can be
equivalently expressed by weighted automata. They then
provide a probabilistic planning algorithm that maximizes
the expected degree of satisfaction. However, all these works
assume the preference relation to be total. To the best of our
knowledge, only Fu (2021) and Kulkarni and Fu (2022) have
studied probabilistic planning with incomplete preferences.
Kulkarni and Fu (2022) focus on the qualitative version of
the problem, synthesizing strategies that identify and exploit
opportunities to improve the most preferred achievable
outcome with either positive probability or probability
one. This is achieved by reducing the problem to reactive
synthesis (Manna and Pnueli 2012; Baier and Katoen 2008).
In Fu (2021), the author introduced the notion of the value
of preference satisfaction for planning within a pre-defined
finite time duration and developed a mixed-integer linear
program to maximize the satisfaction value for a subset
of preference relations. In comparison, our work resorts to
the notion of stochastic ordering to rank the policies in the
stochastic system with respect to the partial order of temporal
goals and allows the time horizon to be finite, but unbounded.

Our contributions in this paper are four-fold. (1) We
introduce a new computational model called Preference De-
terministic Finite Automaton (PDFA), which models a user’s
(possibly partially-ordered) preference over temporally ex-
tended goals. (2) We introduce an algorithm that translates
a set of partially ordered LTLf formulas, each representing
a temporal goal, to a PDFA. (3) We establish a connection
between the PBP in stochastic systems and the notions of
stochastic orders (Massey 1987). This connection allows us
to rank policies given their induced probabilistic distribu-
tion over possible outcomes. Hence, it reduces probabilistic
planning with partially-ordered preferences over temporal
goals to computing the set of nondominated policies for a
multi-objective MDP, constructed as a product of the MDP
modeling the environment and the PDFA specifying the
user preference over the temporal goals. (4) We employ the
property of weak-stochastic nondominated policies to design
multiple objective functions in the product MDP and prove
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that a Pareto-optimal policy in the resulting multi-objective
product MDP is weak-stochastic nondominated respecting
the preference relation. Thus, the set of weak-stochastic
nondominated policies can, then, be computed using any off-
the-shelf solver that computes Pareto optimal policies.

The paper is organized as follows. In Section 2, we present
preliminaries and our problem definition. In Section 3,
we introduce Preference Deterministic Finite Automaton
(PDFA), and in Section 4, we present our algorithm for
converting a preference model of a set of LTLf formulas
into a PDFA. In Section 5, we present our algorithm
for computing a nondominated a policy, given the PDFA
specifying the user’s preference over temporal goals. In
Section 6, we present a case study and our detailed analysis.

We presented a preliminary version of this paper at
the 2023 IEEE International Conference on Robotics and
Automation (Rahmani et al. 2023). In addition to revisions
made throughout the paper, we have included several new
results: (1) Our preliminary version assumed the PDFA
is given by the user, but in this version we assume the
user’s preference is specified using a partially ordered set
of LTLf formulas, and develop an algorithm to translate
the partially ordered set of LTLf formulas into a PDFA; (2)
the preliminary version considered only the notion of weak-
stohastic ordering for comparing policies, but in this version
we added two additional notions of stochastic ordering,
strong-stochastic ordering and weak∗-stochastic ordering;
and (3) we extended our experiment to include results for the
new additional stochastic orderings and discuss how different
stochastic orders may affect the policy choices.

2 Definitions
Notations: The set of all finite words over a finite alphabet
Σ is denoted Σ∗. The empty string, Σ0, is denoted as ϵ. We
denote the set of all probability distributions over a finite set
X by D(X). Given a distribution d ∈ D(X), the probability
of an outcome x ∈ X is denoted d(x).

2.1 The System and its Policy
We model the system using a variant of MDP.

Definition 1. Terminating Labeled Markov Decision Process
(TLMDP). A TLMDP, or a terminating MDP for short, is
a tupleM = ⟨S,A :=

⋃
s∈S As,P, s0, s⊥,AP, L⟩ in which

S is a finite set of states; A is a finite set of actions, where
for each state s ∈ S, As is the set of available actions at s;
P : S ×A→ D(S) is the probabilistic transition function,
where for each s, s′ ∈ S and a ∈ A, P(s, a, s′) is the
probability that the MDP transitions to s′ after taking action
a at s; s0 ∈ S is the initial state; s⊥ ∈ S is the termination
state, which is a unique sink state and As⊥ = ∅; AP is a
finite set of atomic propositions; and L : S → 2AP ∪ {ϵ} is
a labeling function that assigns to each state s ∈ S \ {s⊥},
the set of atomic propositions L(s) ⊆ AP that hold in s.
Only the terminating state is labeled the empty string, i.e.,
L(s) = ϵ if and only if s = s⊥.

Though this definition assumes a single sink state, we do
not lose generality, as one can always convert an MDP with
multiple sink state into an equivalent MDP with a single sink

state by keeping only a single sink state and redirecting all
the transitions to other sink states to that sink state.

The robot’s interaction with the environment in a
finite number k of steps produces an execution ϱ =
s0a0s1a1 · · · sk−1ak−1sk, where s0 is the initial state and
at each step 0 ≤ i ≤ k, the system is at state si, the
robot performs ai ∈ Asi , and then the system transitions
to state si+1, picked randomly based on the distribution
P(· | si, ai). This execution produces a path defined as
ρ = s0s1 · · · sk ∈ S∗, and the trace of this path is defined
as the finite word trace(ρ) = L(s0)L(s1)L(s2) · · ·L(sk) ∈
(2AP)∗. Path ρ is called terminating if sk = s⊥. The set of
all terminating paths in M is denoted Paths⊥(M). A policy
for M is a function π : D → C with D ∈ {S, S∗} and C ∈
{A,D(A)}, and it is called memoryless if D = S; finite-
memory if D = S∗; deterministic if C = A, and randomized
if C = D(A).

In a terminating MDP, a policy is proper if it guarantees
that the termination state s⊥ will be reached with probability
one (Bertsekas and Tsitsiklis 1991). The set of all
randomized, finite-memory, proper polices for M is denoted
ΠM

prop. In this paper, we consider only the TLMDPs for
which all the policies are proper. In other words, the system
always terminates after a finite time. This restriction is due
to that (1) many applications require the robot to finish its
execution in a finite time, and 2) the preference specification,
defined next, is restricted to a partially ordered set of finite
traces.

2.2 Specifying the Temporal Goals
The temporal goals in the MDP are specified formally using
the following language.

Definition 2. Syntax of Linear Temporal Logic on Finite
Traces (LTLf ) (De Giacomo and Vardi 2013). Given a
finite setAP of atomic propositions, a formula in LTLf over
AP is generated by the following grammar:

φ := p | ¬φ | φ ∧ φ | ⃝φ | φUφ,

where p ∈ AP is an atomic proposition, ¬ and ∧ are
the standard Boolean operators negation and conjunction,
respectively, and⃝ and U are temporal operators “Next”
and “Until”, respectively.

The temporal operators are interpreted over sequences
of time instants. The formula ⃝φ means at the next time
instant, φ holds true. Formula φ1 Uφ2 holds true at the
current time instant if there exists a future time instant at
which φ2 holds true and for all time instants from the current
time until that future time, φ1 holds true. An additional
temporal operator “Eventually” (3 ) is defined as 3φ :=
trueUφ. Formula 3φ means there exists a future time
instant at whichφ holds true. The dual of Eventually operator
is the “Always” (2 ). It is defined as 2φ := ¬3¬φ. Formula
2φ means φ holds true at the current instant and all future
instants. For formal semantics of LTLf , see De Giacomo and
Vardi (2013).

Example 1. For the example in Figure 1, we set AP =
{o, d, t}, in which o means orchids are being pollinated,
d means daisies are being pollinated, and t means tulips
are being pollinated. The temporal goals p1 through p4 in
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the example in that figure are expressed using the following
LTLf formulas:

(p1) pollinate tulips first, then at least one out of daisies
and orchids;

(¬d ∧ ¬o)U (t ∧⃝3 (d ∨ o)),

(p2) pollinate two types of flowers, with the first being
either daisies or orchids;

¬tU ((o ∧⃝3 (d ∨ t)) ∨ (d ∧⃝3 (o ∨ t))),

(p3) pollinate only tulips;

(¬d ∧ ¬o)U (t ∧2 (¬d ∧ ¬o)), and

(p4) pollinate either daisies or orchids or no flowers;

2 (¬d ∧ ¬o ∧ ¬t) ∨ (3 o ∧2 (¬d ∧ ¬t))
∨ (3 d ∧2 (¬o ∧ ¬t)).

Given an LTLf formula φ, the words over the alphabet
2AP that satisfy φ, constitute the language of φ, which is
denoted L(φ). In the following context, we assume Σ :=
2AP .

The language of LTLf formula φ can be represented by
the set of words accepted by a finite automaton defined as
follows:

Definition 3. Deterministic Finite Automaton (DFA). A
DFA is a tuple A = ⟨Q,Σ, δ, q0, F ⟩ with a finite set of states
Q, a finite alphabet Σ, a deterministic transition function δ :
Q× Σ→ Q, an initial state q0 ∈ Q, and a set of accepting
(final) states F ⊆ Q. For each state q ∈ Q and letter σ ∈ Σ,
δ(q, σ) = q′ is the state reached upon reading input σ from
state q.

Slightly abusing the notion, we define the extended
transition function δ : Q× Σ∗ → Q in the usual manner:
δ(q, σw) = δ(δ(q, σ), w) for a given σ ∈ Σ andw ∈ Σ∗, and
δ(q, ϵ) = q. A word w ∈ Σ∗ is accepted by the DFA if and
only if δ(q, w) ∈ F . The language of A, denoted L(A), is
set the of all words accepted by the DFA, i.e., L(A) = {w ∈
Σ∗ | δ(q, w) ∈ F}.

For each LTLf formula φ, there exists a DFA Aφ such
that L(φ) = L(Aφ). Therefore, we can encode each LTLf

formula using a DFA (De Giacomo and Vardi 2013).

2.3 Rank the Policies
We introduce a computational model that captures the user’s
preference over different temporal goals.

Definition 4. A preference model is a tuple ⟨U,⪰⟩ where U
is a countable set of outcomes and ⪰ is preorder–a reflexive
and transitive binary relation–on U .

Given u1, u2 ∈ U , we write u1 ⪰ u2 if u1 is weakly
preferred to (i.e., is at least as good as) u2; and u1 ∼ u2 if
u1 ⪰ u2 and u2 ⪰ u1, that is, u1 and u2 are indifferent. We
write u1 ≻ u2 to mean that u1 is strictly preferred to u2, i.e.,
u1 ⪰ u2 and u1 ̸∼ u2. We write u1 ∦ u2 if u1 and u2 are
incomparable.

Definition 5. Given a preference model ⟨U,⪰⟩, let X be a
subset of U , the upper closure of X is defined by

X↑ = {y | y ⪰ x for some x ∈ X}, and

the lower closure of X is defined by

X↓ = {y | y ⪯ x for some x ∈ X}.

A set X is called an increasing set if X = X↑.

Massey (1987) introduced three different stochastic
orderings, called, strong, weak, and weak∗ orderings. The
three stochastic orderings differ in how they determine a
family of subsets of U .

Definition 6. (Massey 1987) Let Est(U), Ewk(U), and
Ewk∗(U) denote the strong, weak, and weak* orderings,
respectively. It is defined that

Est(U) = { all increasing sets in 2U},

Ewk(U) = {{x}↑ | x ∈ U} ∪ {U, ∅}, and

Ewk∗(U) = {E \ {x}↓ | x ∈ U} ∪ {U, ∅}.

These stochastic orderings allow us to rank probability
measures according to the partially ordered set U . Let E(U)
be a family of subsets of U that includes U itself and the
empty set ∅. That is, E ∈ {Est,Ewk,Ewk∗}. Let P1 and
P2 be two probability measures on U . We denote P2 ≥E

P1 whenever P2(X) ≥E P1(X) for all subsets X ∈ E(U).
It is proven that if the partial order U is a total order,
then the three stochastic orderings Est(U), Ewk(U), and
Ewk∗(U) are equivalent (see Proposition 2.5 of Massey
(1987)). However, for a partial order, the three stochastic
orderings may differ.

To illustrate, consider the following example.

Example 2. Let U = {a, b, c, d} and ⪰=
{(a, b), (b, d), (c, d), (a, c), (a, d)} ∪ IU , where IU is
the identity relation on U and that (x, y) ∈⪰ if and only
if x ⪰ y. Also, consider probability measures P1, P2,
and P3 where P1(a) = 0.5, P1(b) = 0.3, P1(c) = 0.2,
P2(b) = 0.5, P2(c) = 0.3, P2(d) = 0.2, and P3(a) =
0.3, P3(b) = 0.2, P3(d) = 0.5.

We have

Est(U) = {{a}, {a, b}, {a, c}, {a, b, c}, {a, b, c, d}, ∅}.

Accordingly,

[P1[X]]X∈Est(U) = [0.5, 0.8, 0.7, 1, 1, 0],

[P2[X]]X∈Est(U) = [0, 0.5, 0.3, 1, 1, 0], and
[P3[X]]X∈Est(U) = [0.3, 0.5, 0.3, 0.5, 1, 0].

Therefore, P1 >Est
P2, P1 >Est

P3. None of P2 and P3

strong-stochastic dominates the other one.
Also, we have

Ewk(U) = {{a}, {a, b}, {a, c}, {a, b, c, d}, ∅}.

Accordingly,

[P1[X]]X∈Ewk(U) = [0.5, 0.8, 0.7, 1, 0],

[P2[X]]X∈Ewk(U) = [0, 0.5, 0.3, 1, 0], and
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[P3[X]]X∈Ewk(U) = [0.3, 0.5, 0.3, 1, 0].

Thus, P1 >Ewk
P2, P1 >Ewk

P3, and P3 >Ewk
P2.

Also, we have

Ewk∗(U) = {{a, b}, {a, c}, {a, b, c}, {a, b, c, d}, ∅}.

Accordingly,

[P1[X]]X∈Ewk∗(U) = [0.8, 0.7, 1, 1, 0],

[P2[X]]X∈Ewk∗(U) = [0.5, 0.3, 0.8, 1, 0], and

[P3[X]]X∈Ewk∗(U) = [0.5, 0.3, 0.5, 1, 0].

Thus, P1 >Ewk∗ P2, P1 >Ewk∗ P3, and P2 >Ewk∗ P3.

In our context, because we are interested in sequential
decision-making and planning problems with a finite time
termination, the set U is selected to be Σ∗, or the set of finite
traces generated by the system and its labeling function.
Based on the ranking of probability measures induced by
each one of the stochastic orderings for Σ∗, we can rank the
proper policies ΠM

prop in the TLMDP as follows.
Note that a proper policy π : S∗ → D(A) produces a

distribution over the set of all terminating paths in the MDP
M such that for each terminating path ρ ∈ Paths⊥(M),
Prπ(ρ) is the probability of generating ρwhen the robot uses
policy π. Each terminating path ρ is mapped to a single word
in Σ∗, namely trace(ρ) = L(s0)L(s1) . . ., and therefore, π
yields a distribution over the set of all finite words over Σ
such that for each word w ∈ Σ∗, Prπ(w) is the probability
that π produces w. Formally,

Prπ(w) =
∑

ρ∈Paths⊥(M):L(ρ)=w

Prπ(ρ).

Additionally, for a subset X ⊆ Σ∗, Prπ(X) is the
probability of the words generated by π to be within X .
Formally,

Prπ(X) =
∑
w∈X

Prπ(w).

Definition 7. Let E ∈ {Est,Ewk,Ewk∗} be a stochastic
ordering and ⟨U := Σ∗,⪰⟩ be a preference model. Given
two proper policies π and π′ for the terminating labeled
MDP M , π E-stochastic dominates π′, denoted π >E π

′,
if for each subset X ∈ E(U), it holds that Prπ(X) ≥
Prπ

′
(X), and there exists a subset Y ∈ E(U) such that

Prπ(Y ) > Prπ
′
(Y ).

This definition is used to introduce the following notion.

Definition 8. A proper policy π ∈ ΠM
prop is E-stochastic

nondominated if there does not exist any policy π′ ∈ ΠM
prop

such that π′ >E π.

Informally, we say a policy π is E-preferred if and only if
it is E-stochastic nondominated in ΠM

prop.
We aim to solve the following planning problem:

Problem 1. Given a terminating labeled MDP M =
⟨S,A :=

⋃
s∈S As,P, s0, s⊥,AP, L⟩, a preference model

⟨Σ∗,⪰⟩, and a stochastic ordering E ∈ {Est,Ewk,Ewk∗},
compute a proper policy that is E−stochastic nondominated.

3 Modeling Preference over LTLf Goals
In this section, we consider the case when the user defines
their preference over temporal goals.

The user specifies the temporal goals using LTLf

formulas, one formula for each goal, and then expresses their
preference over these goals using a preference model over the
set of these formulas.

Definition 9. An LTLf preference model is a preference
model ⟨Φ,⊵⟩ in which Φ = {φ1, . . . , φN} is a finite set of
distinct LTLf formulas over a set of atomic propositions
AP and ⊵ is a partial order—a reflexive, transitive, and an
antisymmetric—relation on Φ.

Two LTLf formulas φ and φ′ are distinct if L(φ) ̸=
L(φ′), where L(φ) is the language of the formula, i.e., the
set of words satisfying the formula.

Assumption 1. We assume that
⋃

1≤i≤N L(φi) = Σ∗,
meaning that for each word w ∈ Σ∗, there is at least one
φ ∈ Φ such that w ∈ L(φ). Note that if

⋃
1≤i≤N L(φi) ⊂

Σ∗, then the assumption will hold by adding the formula
φ =

∧
1≤i≤N ¬φi to Φ.

Assumption 2. The preference model ⟨Φ,⊵⟩ is a partial
order relation over Φ, which means the following properties
are satisfied:

• Reflexive: φ ⊵ φ for all φ ∈ Φ.

• Antisymmetric: φ ⊵ φ′ and φ′ ⊵ φ implies φ = φ′.

• Transitive: φ1 ⊵ φ2 and φ2 ⊵ φ3 implies φ1 ⊵ φ3.

Remark 1. Note that any preference model ⟨Φ,⊵⟩ in which
⊵ is a preorder, i.e., a partial order without the requirement
of being antisymmetric, can be converted into a preference
model ⟨Φ′,⊵′⟩ in which ⊵′ is a partial order. The idea is
to iteratively refine the preference model until the resulting
model has no pair of indifferent formulas. In each step,
two indifferent formulas φi and φj are replaced by their
disjunction φi ∨ φj , after which the preference relation is
altered accordingly.

The model ⟨Φ,⊵⟩ is a combinative preference model,
as opposed to an exclusionary one. This is because we
do not assert the exclusivity condition φi ∧ φj = false.
This allows us to represent a preference such as “Visiting
A and B is preferred to visiting A,” (3A ∧3B ⊵ 3A)
where the less preferred outcome must be satisfied first in
order to satisfy the more preferred outcome. In literature,
it is common to study exclusionary preference models (see
Baier and McIlraith (2008); Bienvenu et al. (2011) and
the references within) because of their simplicity Hansson
and Grüne-Yanoff (2022). However, we focus on planning
with combinative preferences since they are more expressive
than the exclusionary ones (Hansson 2001). In fact, every
exclusionary preference model can be transformed into a
combinative one, but the opposite is not true.

When a combinative preference model is interpreted over
finite words, the agent needs a way to compare the sets
of temporal logic objectives satisfied by two words. For
instance, consider the preference that “Visiting A and B
is preferred to visiting A,” and let w1 = ∅{A}∅{B} and
w2 = ∅{A}∅ be two finite words. Note that w1 has both A
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and B evaluated true, each at some point in time, and w2 =
∅{A}∅ only has A evaluated true. Therefore, w1 |= φ1 ∧ φ2,
whereas w2 satisfies only φ2. To determine the preference
between w1 and w2, the agent compares the set {φ1, φ2}
with {φ2} to conclude thatw1 is preferred overw2. However,
suppose the given preference is that “visiting A is preferred
over visiting B,” i.e., (3A ⊵ 3B). Then the two words w1

and w2 are indifferent since both satisfy the more preferred
objective 3A. To formalize this notion, we define the notion
of most-preferred outcomes.

Given a non-empty subset X ⊆ Φ, let MP(X) ≜ {φ ∈
X | ∄φ′ ∈ X : φ′ ⊵ φ} denote the set of most-preferred
outcomes in X.

Definition 10. Given an LTLf preference model ⟨Φ,⊵⟩ and
a finite word w ∈ Σ∗, the set of most-preferred formulas
satisfied by w is given by MP(w) := MP({φ ∈ Φ | w |=
φ}).

By definition, there is no outcome included in MP(w) that
is weakly preferred to any other outcome in MP(w). Thus,
we have the following result.

Lemma 1. For any word w ∈ Σ∗, formulas in MP(w) are
incomparable to each other.

Proof. By contradiction. Suppose that the set MP(w)
contains two formulas φ1 and φ2 that are comparable. Then,
since ⊵ is a partial order, one of the following cases must be
true: 1) φ1 ▷ φ2, or 2) φ2 ▷ φ1. Consider the first case. By
definition of MP operator, only φ1 is included in MP(w).
Similarly, in second case, only φ2 is included in MP(w).
This is a contradiction.

Now, we formally define the interpretation of ⟨Φ,⊵⟩ in
terms of the preference relation it induces on Σ∗.

Definition 11. An LTLf preference model ⟨Φ,⊵⟩ induces
the preference model ⟨Σ∗,⪰⟩ where for any w1, w2 ∈ Σ∗,

• w1 ⪰ w2 if and only if for every formula φ ∈ MP(w1),
there exists a formula φ′ ∈ MP(w2) such that φ ⊵ φ′,

• w1 ∼ w2 if and only if MP(w1) = MP(w2), and

• w1 ∦ w2, otherwise.

The following set of properties can be shown.

Lemma 2. Letting ⟨Σ∗,⪰⟩ be the preference model induced
by ⟨Φ,⊵⟩, for any w1, w2 ∈ Σ∗, if w1 ⪰ w2, then there does
not exist a pair of outcomes φ ∈ MP(w1) and φ′ ∈ MP(w2)
such that φ′ ⊵ φ.

Proof. By contradiction. Let MP(w1) = {φ1, . . . , φm} and
MP(w2) = {ψ1, . . . , ψt}. Suppose there existsψ ∈ MP(w2)
such that ψ ⊵ φ for some φ ∈ MP(w1). Given the
assumption w1 ⪰ w2, by Definition 11, there exists ψ′ ∈
MP(w2) such that φ ⊵ ψ′. As a result, ψ ⊵ φ ⊵ ψ′,
implying that ψ ⊵ ψ′. This contradicts the result in Lemma 1
which imposes MP(w2) to contain only incomparable
formulas. Thus, the assumption that ψ ⊵ φ is contradicted.

Lemma 3. If w1 ∼ w2, then MP(w1) = MP(w2).

Algorithm 1 Construction of Preference Graph

1: function PREFGRAPH(⟨Φ,⊵⟩, ⟨Q,Σ, δ, ι⟩)
2: InitializeW = ∅, E = ∅, Z = ∅.
3: for all (q,q′) ∈ Q×Q do
4: if MP(q) = MP(q′) then
5: Z = Z ∪ {(q,q′), (q′,q)}
6: else
7: Initialize D as an empty set of sets.
8: for all φ ∈ MP(q) do
9: Add {φ′ ∈ MP(q′) | φ ⊵ φ′} to D.

10: if ∅ /∈ D then
11: Z ← Z ∪ {(q′,q)}.
12: W ← getSCC(⟨Q,Z⟩)
13: for all W,W ′ ∈ W do
14: if ∃q ∈W,q′ ∈W ′ : (q,q′) ∈ Z then
15: E ← E ∪ {(W,W ′)}
16: return G = ⟨W, E⟩

Proof. By way of contradiction, suppose MP(w1) ̸=
MP(w2). Without loss of generality, let φ ∈ MP(w1) \
MP(w2). Given w1 ⪰ w2 and φ ∈ MP(w1), there must exist
a formula ψ ∈ MP(w2) such that φ ⊵ ψ. Also, because
w2 ⪰ w1, there exists a formula ϕ ∈ MP(w1) such that ψ ⊵
ϕ. Due to the transitivity of ⊵, φ ⊵ ψ ⊵ ϕ and thus φ ⊵ ϕ
and that φ, ϕ ∈ MP(w1), contradicting Lemma 1. Since φ is
chosen arbitrarily, witnessing this contradiction implies that
MP(w1) = MP(w2).

Lemma 4. The preference model ⟨Σ∗,⪰⟩ induced by ⟨Φ,⊵
⟩ is a preorder.

Proof. For any w ∈ Σ∗, w ⪰ w because for any φ ∈
MP(w), φ ⊵ φ. Thus, ⟨Σ∗,⪰⟩ is reflexive. For the
transitivity, supposing w1 ⊵ w2 and w2 ⊵ w3, we need to
show that w1 ⊵ w3. Let for each t ∈ {1, 2, 3}, MP(wt) =
{φt,i | i = 1, . . . , nt} be the most prefered formulas satisfied
by wt. Given that w1 ⪰ w2, for any φ1,i ∈ MP(w1), there
exists φ2,j ∈ MP(w2) such that φ1,i ⊵ φ2,j . Also, because
w3 ⪰ w3, for any such φ2,j , there exists φ3,k ∈ MP(w3)
such that φ2,j ⊵ φ3,k. Using the transitivity property of ⊵,
φ1,i ⊵ φ3,k holds. As a result, w1 ⪰ w3.

Note that the preference relation ⟨Σ∗,⪰⟩ needs not to
be antisymmetric since there might exist two words w1 ̸=
w2 such that MP(w1) = MP(w2). For example, with Φ =
{3 a,3 b}, consider two words ∅∅{a}{b} and ∅{a}∅{b}.
Since they both satisfy both 3 a and 3 b, w1 ⪰ w2 and
w2 ⪰ w1, while w1 ̸= w2, showing an example where ⪰ is
not antisymmetric.

4 Constructing a Computational Model for
an LTLf Preference Model

In this section, we introduce a novel computational model
called a Preference Deterministic Finite Automaton (PDFA),
which encodes the preference model ⟨Σ∗,⪰⟩ into an
automaton. We present a procedure to construct a PDFA
for a given preference model P = ⟨Φ,⊵⟩ and prove its
correctness with respect to the interpretation in Definition 11.
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Definition 12. A PDFA for an alphabet Σ is a tuple A =
⟨Q,Σ, δ, ι, G := (W, E)⟩ in which Q is a finite set of states;
Σ is the alphabet; δ : Q× Σ→ Q is a transition function;
ι ∈ Q is the initial state; and G = (W, E) is a preference
graph in which, W = {W1,W2, · · · ,Wm} is a partition of
Q—i.e., W ⊆ Q for each W ∈ W , W ∩W ′ = ∅ for each
distinct state subsetsW,W ′ ∈ W , and

⋃
W∈W W = Q; and

E ⊆ W ×W is a set of directed edges.

With a slight abuse of notation, we define the extended
transition function δ : Q× Σ∗ → Q in the usual way,
i.e., δ(q, σw) = δ(δ(q, σ), w) for w ∈ Σ∗ and σ ∈ Σ, and
δ(q, ϵ) = q. Note that Definition 12 augments a DFA with
the preference graph G, instead of a set of accepting (final)
states.

For two vertices W,W ′ ∈ W , we write W ⇝W ′ to
denote W ′ is reachable from W . By definition, each vertex
W of G is reachable from itself. That is, W ⇝W always
holds.

The PDFA encodes a preference model ⪰ for Σ∗ =
(2AP)∗ as follows. Consider two words w,w′ ∈ Σ∗. Let
W,W ′ ∈ W be the two state subsets such that δ(q, w) ∈W
and δ(q, w′) ∈W ′ (recall that W is a partitioning of Q);
There are four cases: (1) if W =W ′, then w ∼ w′; (2) if
W ̸=W ′ and W ′ ⇝W , then w ≻ w′; (3) if W ̸=W ′ and
W ⇝W ′, then w′ ≻ w; and (4) otherwise, w ∦ w′.

For an example, see Figure 2, which shows the PDFA for
the preferences p1 through p4 in Figure 1.

Next, we describe the construction of PDFA given a
preference model P = ⟨Φ,⊵⟩. The construction involves
two steps, namely, the construction of the underlying graph
of PDFA and the construction of the preference graph.

Definition 13. Given a preference model ⟨Φ,⊵⟩, for each
formula φi ∈ Φ, let Ai = ⟨Qi,Σ, δi, ιi, Fi⟩ be the DFA
representing the language of φi. The underlying automaton
of the PDFA representing ⟨Φ,⊵⟩ is the tuple,

⟨Q,Σ, δ, ι⟩

in which Q = Q1 ×Q2 × · · ·Qn is the set of states
in PDFA; δ : Q× Σ→ Q is a deterministic transition
function where for each q = (q1, q2, · · · , qn) ∈ Q and a ∈
Σ, δ(q, a) = (δ1(q1, a), δ2(q2, a), · · · , δ(qn, a)); and ι =
(ι1, ι2, · · · , ιn) is the initial state.

We represent each state in Q as a vector q and the i-th
component of q, denoted as q[i], is the state in Qi.

Algorithm 1 describes a procedure to construct the
preference graph. It uses the following definition that slightly
abuses the notation MP(·): For each product state q, we
define the set

MP(q) = MP({φi ∈ Φ | q[i] ∈ Fi})

In words, MP(q) is a set of most preferred formulas satisfied
by any word that ends in q.

Given the preference model ⟨Φ,⊵⟩ and the underlying
automaton ⟨Q,Σ, δ, ι⟩ of the PDFA, lines 3-11 of
Algorithm 1 construct a set Z of directed edges such that
(q′,q) ∈ Z if and only if for every φ ∈ MP(q), there exists
a formula φ′ ∈ MP(q′) such that φ ⊵ φ′. Lines 12-15 of
Algorithm 1 shows how the set W and edges E of the
preference graph are constructed. Using the set of directed

Figure 2. PDFA for the example in Figure 1. Left) The DFA
structure of PDFA. Right) The preference graph of PDFA.

edges Z, the algorithm computes first the setW as the set of
strongly connected components of the graph given by state
set Q and edges Z. Then, a directed edge from an SCC W
to another SCC W ′ is added if there is a state q ∈W and a
state q ∈W ′ such that (q,q′) ∈ Z.

In Section 6, we provide a detailed explanation of the
construction of the PDFA for the preferences in Figure 1,
implemented through our algorithm.

We next show how the PDFA constructed using the
product operation in Definition 13 and Algorithm 1 encodes
the exact preference model ⟨Φ,⊵⟩.

Proposition 1. Let W be the set of nodes constructed
by Algorithm 1. For each q,q′ ∈ Q for which MP(q) =
MP(q′), it holds that q and q′ are included in the same node
inW .

Proof. By the construction in Line 5 of Algorithm 1 and the
definition of strongly connected components (Cormen et al.
2022).

Proposition 2. If (q,q′) ̸∈ Z, then in graph ⟨Q,Z⟩ there is
no directed path from q to q′.

Proof. For the sake of contradiction, suppose (q,q′) /∈ Z
but there is a directed path of length greater than 1 from q
to q′. Let this path be q0 → q1 → · · · → qn where q0 =
q, qn = q′, and q1 through qn−1 are intermediate states
along the path. For i = 0, . . . , n, let Xi = MP(qi). By
the construction, for any φ ∈ Xi+1, there exists a formula
ψ ∈ Xi such that φ ⊵ ψ. Applying the transitivity of the
preference ⊵, it holds that for any φ ∈ Xn = MP(q′), there
exists a formula ψ ∈ X0 = MP(q) such that φ ⊵ ψ. As a
result, (q,q′) ∈ Z, contradicting the assumption.

Proposition 3. SetW constructed by Algorithm 1 partitions
Q.

Proof. This property automatically holds due to the property
of strongly connected components (Cormen et al. 2022).

Theorem 1. Let ⟨Σ∗,⪰⟩ be the preference model induced
by the semantics of ⟨Φ,⊵⟩ (Definition 11). Given the PDFA
A = ⟨Q,Σ, δ, ι, G⟩ constructed for the preference model
⟨Φ,⊵⟩ using Definition 13 and Algorithm 1, for any w,w′ ∈
Σ∗ let W,W ′ ∈ W be the nodes such that δ(ι, w) ∈W and
δ(ι, w′) ∈W ′, the following statements are established:

• (Case 1) W =W ′ if and only if w′ ∼ w.

• (Case 2)W ̸=W ′ andW →W ′ if and only ifw′ ⪰ w
and w ̸∼ w′.
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• (Case 3)W ̸=W ′ andW ′ →W if and only ifw ⪰ w′

and w ̸∼ w′.

• (Case 4) w ∦ w′, otherwise.

Proof. Let q = δ(ι, w) and q′ = δ(ι, w′). By construction
of the function MP(·) and the product operation in
Definition 13, the following equation holds:

MP(w) = MP({φi | δi(ιi, w) ∈ Fi})
= MP({φi | q[i] ∈ Fi})
= MP(q)

Case 1: (⇒) IfW =W ′, then both q,q′ ∈W . This means
that q⇝ q′ and q′ ⇝ q. By proposition 2, it is only possible
that (q,q′) ∈ Z and (q′,q) ∈ Z. MP(q) = MP(q′) can be
derived due to the antisymmetric property in the partial order
of ⟨Φ,⊵⟩.

(⇐) If w ∼ w′, then MP(q) = MP(q′) and therefore
W =W ′.

Case 2: (⇒) If W →W ′, then given the construction of
the preference graph by lines 13-15 of Algorithm 1, there
exist q ∈W and q′ ∈W ′ such that (q, q′) ∈ Z. Therefore,
by construction in Algorithm 1, for any φ′ ∈ MP(q′), there
is a φ ∈ MP(q) such that φ′ ⊵ φ. Then, by Def. 11,w′ ⪰ w.

(⇐) If w′ ⪰ w, then (q,q′) ∈ Z. Because W ̸=W ′, then
there is no path from q′ to q. As a result, it is not the case
that w ⪰ w′. Thus, w ̸∼ w′.

Case 3: proof similar to the proof of Case 2.
Case 4 is a direct consequence from Cases 1, 2 and 3.

Using the computational model PDFA, we can directly
compute the set {w}↑ for any w ∈ Σ∗.

Lemma 5. For each word w ∈ Σ∗, if δ(ι, w) ∈W for some
W ∈ W , then the upper closure of w is

{w}↑ = {w′ ∈ Σ∗ | ∃W ′ ∈ W,

δ(ι, w′) ∈W ′ and W ⇝W ′}, (1)

and the lower closure of w is

{w}↓ = {w′ ∈ Σ∗ | ∃W ′ ∈ W,

δ(ι, w′) ∈ W ′ and W ′ ⇝W} (2)

The lemma directly follows from the transition function in
A and the transitivity property of the preference relation and
thus the proof is omitted.

Example 3. Consider three LTLf formulas φ1 = 3 a,
φ2 = 3 b, and φ3 = ¬3 a ∧ ¬3 b. Also, assume φ1 ▷ φ2,
φ1 ▷ φ3, and φ2 ∦ φ3. The left column of Figure 3 shows
for each of the three LTLf formula, a DFA that encodes that
formula. The column in right shows the PDFA our algorithm
constructs for these three formulas and the associated user
preferences. In this PDFA, we have written in blue for
each state x, Outcomes(x), the set of formulas satisfied
when the word ends at state x. For each state x, we have
also written in red, MP(x)—the most preferred formulas
among those formulas in Outcomes(x). Accordingly,
Outcomes(qpr) = {φ3}, Outcomes(q′pr′) = {φ1},
Outcomes(qp′r′) = {φ2}, and Outcomes(q′p′r′) =
{φ1, φ2}. Also, MP(qpr) = {φ3}, MP(q′pr′) = {φ1},

MP(qp′r′) = {φ2}, and MP(q′p′r′) = {φ1}. Note that
because φ1 ▷ φ2, MP(q′p′r′) = MP({φ1, φ2}) = {φ1}.
Given that MP(q′p′r′) = MP(q′pr′), states q′p′r′ and q′pr′

belong to the same vertex in the preference graph.

Figure 3. PDFA for the example in Figure 1. Left) Three DFAs
for three LTLf formulas φ1, φ2, and φ3, for which the user
preference is: φ1 ▷ φ2, φ1 ▷ φ3, φ2 ∦ φ3. Right) The PDFA
constructed by our algorithm for the LTLf formulas and the
preference over them. The output of each state—the set of
formulas that satisfies every string that ends at that state—is
shown in blue and the most preferred formulas for each state is
shown in red.

5 Synthesizing a Most-Preferred Policy
With the computational model PDFA representing the
partially-ordered temporal goals, we are ready to present
a planning algorithm to solve Problem 1. The algorithm
computes for a given TLMDP, a policy that is most-preferred
given the user preferences specified by a given PDFA. The
first step is to augment the planning state space with the states
of the PDFA. With this augmented state space, we can relate
the preferences over traces in the MDP to a preference over
subsets of terminating states in a product MDP, defined as
follows.

Definition 14. Product MDP. Let M = ⟨S,A :=
Σs∈SAs,P, s0, s⊥,AP, L⟩ and A = ⟨Q,Σ, δ, ι, G :=
(W, E)⟩ be respectively the TLMDP and the PDFA.
The product of M and A is a tuple M = (X,A :=⋃

x∈X Ax,T, x0, XG,G := (Y, E)) in which

1. X = S ×Q is the state space;

2. A is the action space, where for each x = (s, q) ∈ X ,
Ax = As is the set of available actions at state x;

3. T : X ×A→ D(X) is the transition function such
that for each state (s, q) ∈ X , action a ∈ A, and state
(s′, q′) ∈ X;

T((s, q), a, (s′, q′)) ={
P(s, a, s′) if q′ = δ(q, L(s′)),

0 otherwise;

4. x0 = (s0, δ(ι, L(s0))) is the initial state;

5. XG = {s⊥} ×Q is the set of terminating states;
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6. G = (Y, E) is the preference graph, in which, letting
Yi = {s⊥} ×Wi for each Wi ∈ W ,

• Y = {Yi | i = 1, . . . , |W|} is the vertex set of the
graph, and

• E is the edge set of the graph such that (Yi, Yj) ∈
E if and only if (Wi,Wj) ∈ E.

The preference graph of this MDP has been directly lifted
from the one defined for the PDFA. Given Y, Y ′ ∈ Y , we
use Y ⇝ Y ′ to denote that Y ′ is reachable from Y in the
preference graph G. Again, every Y is reachable from itself.

Example 4. Continuing with the example in Figure 2, we
have Y1 = {s⊥} ×W1 = {(s⊥, q2)}, Y2 = {s⊥} ×W2 =
{(s⊥, q4)}, Y3 = {s⊥} ×W3 = {(s⊥, q1)}, and
Y4 = {s⊥} ×W4 = {(s⊥, q0), (s⊥, q3), (s⊥, q5)}.

Next, we show how to compute a stochastic nondominated
policy in the sense of Definition 8 through solving a
Multi-objective MDP (MOMDP). The existence of such a
MOMDP is guaranteed by the multi-utility representation
theorem (Ok et al. 2002, Proposition 1), which states that for
every partial order ⟨U,⪰⟩ defined over a finite set U , there
exists a vector-valued utility function u : U → Rn such that
for any x, y ∈ U , x ⪰ y if and only if u(x) ≥ u(y) where ≥
is element-wise *.

We extend the notions related to stochastic ordering
for state subsets of the product MDP M, constructed in
Definition 14, as follows:

Definition 15. Let Y ⊆ Y be a set of vertices in the
preference graph G. The upper closure of Y with respect to
G is defined by

Y↑
i = {Y ′ | ∃Y ∈ Y, Y ⇝ Y ′}

and the lower closure of Y is defined by

Y↓
i = {Y ′ | ∃Y ∈ Y, Y ′ ⇝ Y }.

Also, Y ⊆ Y is called an increasing set if Y = Y↑.

These sets are used to define a stochastic ordering type as
follows:

Definition 16. Let Est(Y),Ewk(Y),Ewk∗(Y) denote the
strong, weak, and weak* orderings, respectively, where

Est(Y) = { all increasing sets in 2Y},

Ewk(Y) = {{Y }↑ | Y ∈ Y} ∪ {Y, ∅},
Ewk∗(Y) = {Y \ {Y }↓ | Y ∈ Y} ∪ {Y, ∅},

For a stochastic ordering E ∈ {Est,Ewk,Ewk∗}, let the
elements of set E(Y) \ {Y, ∅} to be indexed arbitrary as
Y1,Y2, · · · ,YN . We use this indexed set in the following
construction to make a multi-objective MDP.

Definition 17. MOMDP. Given a stochastic
ordering E ∈ {Est,Ewk,Ewk∗}, the multi-objective
MDP (MOMDP) associated with the product MDP
M = ⟨X,A,T, x0, XG,G := (Y, E)⟩ in Definition 14
and the stochastic ordering E, is a tuple P = ⟨X,A :=⋃

x∈X Ax,T, x0, XG,Z = {Z1, Z2, · · · , ZN}⟩ in whichX ,
A, T, x0, and XG are the same elements inM and for each
Yi ∈ E(Y) \ {Y, ∅}, Zi =

⋃
Y ∈Yi

Y . The i-th objective in
the MOMDP is to maximize the probability for reaching the
set Zi.

Note that each Zi is a subset of goal states XG, and that
the intersection of two distinct goal subsets Zi and Zj may
not be empty.

Remark 2. We exclude Y and ∅ from the construction of
the multi-objective MDP. This is because we consider only
proper policies and under any proper policy, any state inXG

is reached with probability one. As a result, the probability
of reaching the objectives ∅ and Y are always 0 an 1,
respectively, regardless of the chosen stochastic ordering.

To illustrate the construction of P , we continue with our
running example.

Example 5. Using the running example in Figure 2, for
which the preference graph of the product MDP is shown
in Example 4, we have {Y1}↑ = {Y1}, {Y2}↑ = {Y1, Y2},
{Y3}↑ = {Y1, Y3}, and {Y4}↑ = {Y1, Y2, Y3, Y4}, and as a
result,

Ewk(Y) \ {Y, ∅} = {{Y1}, {Y1, Y2}, {Y1, Y3}},

and thus, under weak-stochastic ordering, the MOMDP will
have the following objectives

Z1 = Y1, Z2 = Y1 ∪ Y2, and Z3 = Y1 ∪ Y3.

Also, we have {Y1}↓ = {Y1, Y2, Y3, Y4}, {Y2}↓ =
{Y2, Y4}, {Y3}↓ = {Y3, Y4}, and

Ewk∗(Y) \ {Y, ∅} = {{Y1, Y3}, {Y1, Y2}, {Y1, Y2, Y3}},

and therefore, under weak*-stochastic ordering, the
MOMDP will have the following objectives

Z1 = Y1 ∪ Y3, Z2 = Y1 ∪ Y2, and Z3 = Y1 ∪ Y2 ∪ Y3.

Furthermore,

Est(Y) \ {Y, ∅} = {{Y1}, {Y1, Y2}, {Y1, Y3}, {Y1, Y2, Y3}},

and hence, under strong-stochastic ordering, the MOMDP
will have the following objectives

Z1 = Y1, Z2 = Y1 ∪ Y2, Z3 = Y1 ∪ Y3, and

Z3 = Y1 ∪ Y2 ∪ Y3.

Accordingly, the objectives for each of the stochastic
orderings in terms of the temporal goals in Figure 1 can be
summarized as Table 1.

Table 1. Objectives of different stochastic ordering types for the
temporal goals in Figure 1.

Stochastic Ordering Objectives
Weak {p1}, {p1, p2}, {p1, p3}
Strong {p1}, {p1, p2}, {p1, p3}, {p1, p2, p3}
Weak* {p1, p2}, {p1, p3}, {p1, p2, p3}

∗Specifically, the multi-utility representation theorem (Ok et al. 2002,
Proposition 1) requires the partial order ⪰ over the set U to be representable
as an intersection of finitely many linear orders. However, Dushnik and
Miller (1941); Fishburn (1985) have proved that every partial order over a
finite set can be represented as an intersection of finitely many linear orders.
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Given the MOMDP in Definition 17, for a given
randomized, finite-memory policy µ : X∗ → D(A), we can
compute the value vector of µ as a N -dimensional vector
Vµ = [Vµ

1 ,V
µ
2 , · · · ,V

µ
N ] where for each i, Vµ

i is the
probability of reaching states of Zi by following policy µ,
starting from the initial state.

Given a randomized, memoryless policy µ : X → D(A),
to compute its value vector Vµ, we first set for each goal
state xg ∈ XG, Vµ(xg) to be the vector such that for
each i ∈ {1, · · · , n}, Vµ

i (xg) = 1 if xg ∈ Zi, and otherwise
Vµ

i (xg) = 0. Then we compute the values of the non-goals
states x ∈ X \XG via the Bellman equation

Vµ(x) =
∑
a∈A

(
µ(x, a)

∑
x′∈X

T(x, a, x′)Vµ(x′)

)
. (3)

Definition 18. Given two proper polices µ and µ′ for M,
it is said that µ Pareto dominates µ′, denoted µ > µ′, if
for each i ∈ {1, · · · , N}, Vµ

i ≥ Vµ′

i , and for at least one
j ∈ {1, · · · , n}, Vµ

j > Vµ′

j .

Intuitively, µ Pareto dominates µ′ if, compared to µ′, it
increases the probability of reaching at least a set Zj without
reducing the probability of reaching other sets Zi’s.

Definition 19. A proper policy µ for the MOMDP is Pareto
optimal if for no proper policy µ′ for the MOMDP it holds
that µ′ > µ.

In words, a policy is Pareto optimal if it is not dominated
by any policy. The Pareto front is the set of all Pareto optimal
policies. It is well-known that the set of memoryless policies
suffices for achieving the Pareto front (Chatterjee et al.
2006). Thus, we restrict to computing memoryless policies.

With this in mind, we present the following result.

Theorem 2. Assume the MOMDPP in Definition 17 is con-
strcuted under a stochastic ordering E ∈ {Est,Ewk,Ewk∗}
and let µ : X → D(A) be a policy for P . Construct policy
π : S∗ → D(A) for the TLMDP M such that for each ρ =
s0s1 · · · sn ∈ S∗ it is set π(ρ) = µ((sn, δ(ι, trace(ρ)))). If
µ is Pareto optimal, then π is E-stochastic nondominated,
respecting the preference specified by PDFA A.

Proof. We first provide a detailed proof of the case where
E = Ewk, that is, where P is constructed for weak-stochastic
ordering. We show that if µ is Pareto optimal then π is
weak-stochastic nondominated. To facilitate the proof, the
following notation is used: Let Prµ(reach(H),M) be the
probability of terminating in the set H ⊆ X given the policy
µ for the MOMDP and Prπ(reach(P ),M) be the probability
of terminating in the set P ⊆ S given the policy π in the
original STLMDP.

First, consider that by the construction of the product
MDP, Definition 14, preference graphs G and G are
isomorphic, and thus, each Yi ∈ Y is mapped to a single
Wi ∈ W , and vice versa. Define W+

i =
⋃

W :Wi⇝W W for
each Wi ∈ W . That is, let W+

i include the unions of
states in all the nodes that can be reached from Wi in
the preference graph. Note that Wi ∈W+

i . Given that G
and G are isomorphic, Yi ⇝ Yj if and only if Wi ⇝Wj

for all i, j ∈ {1, 2, · · · , N}. This combined with that Zi =⋃
Y ∈{Yi}↑ Y for i ∈ {1, · · · , N} by Definition 17, implies

that for each i,

Vµ
i = Prµ(reach(Zi),M) = Prπ(reach(W+

i ),M}. (4)

Next, for each w,w′ ∈ Σ∗ such that δ(ι, w) = δ(ι, w′), it
holds that {w}↑ = {w′}↑. Given this and Lemma 5, for each
Wi and w ∈ Σ∗ such that δ(ι, w) ∈Wi,

Prπ(reach(W+
i ),M) = Prπ({w}↑). (5)

Finally, given that µ is a Pareto optimal policy, by
Definition 18 and Definition 19, it means there exists no
policy µ′ such that Vµ′

i ≥ Vµ
i for all integers 1 ≤ i ≤ n

and Vµ′

j > Vµ
j for some integer 1 ≤ j ≤ n. This, by (4)

and (5) and that the set of randomized, memoryless policies
suffices for the Pareto front of M, means there exists no
policy π′ ∈ ΠM

prop such that Prπ
′
({w}↑) ≥ Prπ({w}↑) for

every w ∈ Σ∗ and Prπ
′
({w′}↑) > Prπ({w′}↑) for some

w′ ∈ Σ∗. This, by Definition 7 and Definition 8, means that
π is weak-stochastic nondominated.

Proof for the case where P is constructed for weak*-
stochastic ordering, that is, where E = Ewk∗, is very
similar, except that wherever W+ is used we use
W

−
, defined as W

−
i =W \

(⋃
W,W⇝Wi

W
)

. For strong-
stochastic ordering, we first construct for all subset V ⊆W ,
the set V ↑ = {W | ∃Wi ∈ X,Wi ⇝W}, then exclude any
set V ↑ if V ↑ ̸= V . Then, for each remaining set V ↑, the set
of states contained in V ↑ is used to define one reachability
objective.

Given the MOMDP, one can use any existing methods
to compute a set of Pareto optimal policies for P . For a
survey of those methods, see Roijers et al. (2013). Note that
computing the set of all Pareto optimal policies is generally
infeasible, and thus, one needs to compute only a subset of
them or to approximate them.

6 Case Study: Garden
In this section, we present the results from the planning
algorithm for the running example in Figure 1 . In the garden,
the actions of the robot are N , S, E, W— corresponding to
moving to the cell in the North, South, East, and West side
of the current cell, respectively—and T for staying in the
current cell. The bee robot initially has a full charge, and
using that charge it can fly only 12 time steps.
Uncertain environment: A bird roams about the south east
part of the garden, colored yellow in the figure. When the
bird and the bee are within the same cell, the bee needs to
stop flying and hide in its current location until the bird goes
away. The motion of the bird is given by a Markov chain.
Besides the stochastic movement of the bird, the weather is
also stochastic and affects the robot’s planning. The robot
cannot pollinate a flower while raining. We assume when the
robot starts its task, at the leftmost cell at the bottom row, it is
not raining and the probability that it will rain in the next step
is 0.2. This probability increases for the consecutive steps
each time by 0.2 until the rain starts. Once the rain started,
the probability for the rain to stop in the five following time
steps will respectively be 0.2, 0.4, 0.6, 0.8, and 1.0, assuming
the rain has not already stopped at any of those time steps.
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We implemented this case study in Python and considered
two variants of it: Case 1 without stochasticity in the robot’s
dynamics, and Case 2 with stochasticity. In Case 1, when the
robot decides to perform an action to move to a neighboring
cell, its actuators will guarantee that the robot will move
to that cell after performing the action. In Case 2, the
probability that the robot reaches the intended cell is 0.7,
and for each of the unintended directions except the opposite
direction, the probably that the robot’s actuators move the
robot to that unintended direction is 0.1. If the robot hits the
boundary, it stays in its current cell.

All the experiments were performed on a Windows 11
installed on a device with a core i9, 2.50GHz CPU and a
32GB memory.

6.1 The Preference DFA
We first describe how the PDFA in Figure 2 is generated
given the preference over LTLf formulas p1-p4 from
Example 1, formulating the preferences in Figure 1. Figure 4
shows for each of the four LTLf formula, a DFA that
encodes that formula. This figure also shows the PDFA
our algorithm constructs for these four formulas and the
associated user preferences, consisting of the underlying
DFA and the preference graph, shown respectively in Part
(e) and Part (f) of this figure. The PDFA is generated using
our open-source tool † implemented in Python3. Note that
the PDFA in this figure is the same PDFA in Figure 2, but
this figure illustrates how the states q0-q5 in Figure 2 are
constructed. The states in the underlying DFA represent the
formulas satisfied by any word whose trace ends in that
state. For instance, Outcomes((3, 2, 3, 4)) = {p4}. This is
because the first three components 3, 2, 3 are not accepting
in their respective DFAs, but the fourth component, 4, is an
accepting state in the DFA for p4 (see Figure 4). The states of
the preference graph encode the partition of Q based on the
most-preferred outcomes satisfied by the states. For example,
state (3, 6, 3, 2) belongs to the block (0, 1, 0, 0) since the
most-preferred outcomes satisfied by (3, 6, 3, 2) is {p2}.

Recall how the PDFA produces a ranking over the words
in Σ∗. For example, consider two paths in the MDP M : A
path ρ1 that pollinates tulips first and then daisies, and a
path ρ2 that first pollinates orchids and then daisies. The
trace of ρ1, trace(ρ1), induces a path that terminates in
state (4, 5, 3, 2) of the underlying DFA, whereas trace(ρ2)
terminates in (3, 6, 3, 2). Accordingly, state (4, 5, 3, 2) of
the PDFA belongs to the block of the partition represented
by the vertex (1, 0, 0, 0) in the preference graph, and state
(3, 6, 3, 2) belongs to the block represented by the vertex
(0, 1, 0, 0). Since the preference graph has an edge from
(0, 1, 0, 0) to (1, 0, 0, 0), it is implied that ρ1 is strictly
preferred over ρ2.

6.2 Case 1: Deterministic Action Transitions
but Uncertain Environments

For the case when the robot’s actions have deterministic
outcomes, the constructed MDP has 10, 460 states and
280, 643 transitions (its transition function has 280, 643
entries with non-zero probabilities). It took 39.06 seconds
for our program to construct the MDP. The product
MDP had 36, 649 states and 946, 467 transitions. The

average construction times for the product MDP over
10 constructions for each of the weak stochastic order,
strong stochastic order, and weak* stochastic order were
respectively 238.78, 238.57, and 238.76 seconds.

Given the preference described in Fig. 2, we employ
linear scalarization methods to solve the MOMDP.
Specifically, given a weight vector w ∈ [0, 1]N , we compute
the nondominated policy µw, by first setting Vw(x) =∑

1≤i≤N :x∈Zi
w[i] for each goal state x ∈ XG, and then by

solving the following Bellman equation for the values of the
non-goal states x ∈ X \XG:

Vw(x) = max
a∈Ax

∑
x′∈X

T(x, a, x′)Vw(x′). (6)

The policy for those states is recovered from Vw(x) as

µw(x) = argmax
a∈Ax

∑
x′∈X

T(x, a, x′)Vw(x′). (7)

For each of the three stochastic orderings
E ∈ {Est,Ewk,Ewk∗}, we randomly generated 1, 000
weight vectors and used each one of them to compute a
Pareto optimal policy for the MOMDP. For each stochastic
orderings E, the 1, 000 computed Pareto-optimal policies are
expected to be E-nondominated policies. From the result, it
is noted that for each stochastic orderings E, none of those
1, 000 computed polices were E-stochastic dominated by the
other polices. This is expected due to Theorem 2.

Next, we provide more detailed analysis for weak-
stochastic non-dominated policies. Recall from Table 1 that
the objectives for the weak-stochastic ordering are {p1},
{p1, p2}, and {p1, p3}. Since it is difficult to illustrate the
3D Pareto front, we select a set of policies with similar
probabilities (approximately 0.24) of satisfying p1 and then
plot the values of these policies for the objectives {p1, p2}
and {p1, p3}. Figure 5 shows the values of those policies for
the objectives {p1, p2} and {p1, p3}. This figure shows that
none of those policies weak-stochastic dominates each other.

Weight Vector
Value Vector

[{p1}, {p1, p2}, {p1, p3}]
Prob. of individual outcomes

1 [0.466, 0.412, 0.122] [0.110, 0.799, 0.291] [0.110, 0.689, 0.181, 0.020]

2 [0.363, 0.438, 0.199] [0.146, 0.726, 0.395] [0.146, 0.580, 0.249, 0.025]

3 [0.207, 0.484, 0.309] [0.201, 0.558, 0.633] [0.201, 0.357, 0.432, 0.01]

4 [0.134, 0.519, 0.347] [0.173, 0.638, 0.527] [0.173, 0.465, 0.354, 0.008]

5 [0.141, 0.541, 0.318] [0.068, 0.874, 0.187] [0.068, 0.806, 0.119, 0.007]

6 [0.434, 0.339, 0.227] [0.241, 0.427, 0.798] [0.241, 0.186, 0.557, 0.016]

7 [0.428, 0.223, 0.349] [0.239, 0.250, 0.980] [0.239, 0.011, 0.741, 0.009]

8 [0.213, 0.395, 0.392] [0.240, 0.307, 0.925] [0.240, 0.067, 0.685, 0.008]

9 [0.742, 0.208, 0.050] [0.240, 0.432, 0.787] [0.240, 0.192, 0.547, 0.021]

10 [0.057, 0.488, 0.455] [0.240, 0.398, 0.831] [0.240, 0.158, 0.591, 0.011]

Table 2. Ten weak-stochastic nondominated polices computed
by our algorithm for the Garden case study.

Table 2 shows 10 out of those 1, 000 weight vectors
along with the value vectors of the weak-stochastic non-
dominated polices computed for those weight vectors and the
corresponding probabilities those polices assign to the four

†Tool for constructing PDFA from a preference over LTLf formulas:
https://akulkarni.me/prefltlf2pdfa.html
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(a) DFA for p1:
(¬d ∧ ¬o)U (t ∧⃝3 (d ∨ o)). (b) DFA for p2: ¬tU ((o ∧⃝3 (d ∨ t)) ∨ (d ∧⃝3 (o ∨ t))).

(c) DFA for p3:
(¬d ∧ ¬o)U (t ∧ 2 (¬d ∧ ¬o)).

(d) DFA for p4:
2 (¬d ∧ ¬o ∧ ¬t) ∨ (3 o ∧ 2 (¬d ∧
¬t)) ∨ (3 d ∧ 2 (¬o ∧ ¬t)). (e) The underlying DFA of the PDFA. (f) The preference graph of the PDFA.

Figure 4. a)-d) The DFAs for p1 − p4 for the example Figure 1, which are constrcuted by our online tools, available at
https://akulkarni.me/prefltlf2pdfa.html. e)-f) The PDFA for the example in Figure 1, which is constructed the
implementation of our algorithm for converting a preference model over LTLf formulas into a PDFA.

Figure 5. The probabilities of satisfying objectives {p1, p2} and
{p1, p3} by the computed policies for weak-stochastic ordering
who satisfy the objective {p1} with probability 0.2406.

preferences p1 through p4. For each policy, the last column
shows a probability distribution over individual outcomes
p1, . . . , p4 indicating the probabilities of satisfying those
formulas (in that order), given the computed policy. The
third column shows the multi-objective value vector of each
computed policy. It is noted that none of those value vectors
dominates any other value vector.

Rows 6 and 9 of this table show that even if the weight
assigned to the most preferred outcome, p1, is significantly

higher than the weights assigned to the other preferences, the
probability that p1 to be satisfied is still less than 0.25. This is
justified by the fact that the robot’s battery capacity supports
the robot for only 12 time steps and thus to achieve p1, the
robot must not be stopped by the bird and not encounter rain
when it reaches a cell to do pollination. The probability to
satisfy these conditions given the environment dynamics is
less than 0.25.

The probability of p4 to be satisfied in any entry of this
table is very small, regardless of the weight vector. This is
because p4 has the lowest priority, and any policy would
prefer to satisfy other preferences who are assigned higher
priorities.

Although the objectives {p1, p2} and {p1, p3} in the
eighth and the tenth rows are treated almost equally by
the weight vector in terms of importance, the probability
that the later to be satisfied is significantly bigger than the
probability of the former to be satisfied. This is because
the objective {p1} contains the preference with the highest
priority and that those two rows assign a very high weight to
this objective, forcing the policy to try to satisfy p1. Further,
by attempting to perform p1, the robot has the chance to
accomplish p3 within the same attempt, even if it fails to
accomplish p1. More precisely, if in attempting to perform
the task p1—first tulips and then at least one out of daisies
and orchids—the robot succeeds to pollinate the tulips but
fails to pollinate the daisies and orchids, then it has already
accomplished p3, even though it has failed in accomplishing
what it was aiming for—p1.
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6.3 Case 2: Introducing Stochastic Robot
Dynamics

The MDP for this variant has the same number of
states, 10, 460, but it has more transitions, 779, 396,
which is due to the stochasticity in robot’s dynamics.
We consider all the three types of stochastic orderings.
The MDP construction time for weak-stochastic ordering,
strong-stochastic ordering, and weak*-stochastic ordering
were respectively 205.92, 203, 43 and 238.83 seconds.
The construction time of the product MDP for these
three stochastic ordering types were respectively 1, 088.58,
1, 088.59, and 1, 089.02 seconds.

Due to the stochasticity in the robot’s dynamic, for
each kind of stochastic ordering, we expect the pol-
icy computed for a specific weight vector to perform
“poorer” than a policy computed for the same weight
vector of Case 1. We first compare the two polices
for weak-stochastic ordering, given the weight vector
[0.3333, 0.3333, 0.3334]. The probabilities of the prefer-
ences to be satisfied for the variant without stochasticity were
[p1 : 0.241, p2 : 0.053, p3 : 0.699, p4 : 0.007], while those
probabilities for the variant with stochasticity were [p1 :
0.008, p2 : 0.821, p3 : 0.120, p4 : 0.051]. While the former
policy yields a higher probability of achieving p3, the latter
policy puts most of its efforts to satisfy p2 and has a very low
probability (close to 0) to satisfy the most preferred goal p1.
Similar observation is made for strong-stochastic ordering
using the weight vector [0.25, 0.25, 0.25, 0.25]. The proba-
bilities of the preferences to be satisfied for the variant with-
out stochasticity were [p1 : 0.241, p2 : 0.053, p3 : 0.699, p4 :
0.007], while those probabilities for the variant with stochas-
ticity were [p1 : 0.002, p2 : 0.931, p3 : 0.026, p4 : 0.041].

Lastly, for weak*-stochastic ordering, we have three ob-
jectives {p1, p2}, {p1, p3}, {p1, p2, p3} (after removing the
empty set and the set {p1, p2, p3, p4}). Given the weight vec-
tor [0.3333, 0.3333, 0.3334], the probabilities of the prefer-
ences to be satisfied for the variant without stochasticity were
[p1 : 0.241, p2 : 0.053, p3 : 0.699, p4 : 0.007], while those
probabilities for the variant with stochasticity were [p1 :
0.000, p2 : 0.953, p3 : 0.007, p4 : 0.040].

Given the same weight vector but different stochastic
orderings, we observed that the probability of satisfying p2 in
the stochastic variant is much larger (≈ 16 times more likely)
than that of the deterministic variant. This result is mainly
due to the difficulty in reaching tulips given the coupled
inherent stochastic dynamics and uncertain environmental
factors (clouds and the bird). Because the chance of reaching
tulips is very small, the probability of satisfying p1 or p3
– both require tulips to be visited — are equally small.
As a result, the preference-based planner (across all three
stochastic orders) satisfies p2 with a much higher probability
since p2 only requires two flower types to be pollinated.
This experimental comparison demonstrates the flexibility
of preference-based planners to adjust the goal based on
changes in the system and environment dynamics.

7 Conclusions and Future Work
In this paper, we introduced a formal language for specifying
user’s partially-ordered preferences over temporal goals
expressed in LTLf . We developed an algorithm to convert

the user preference over LTLf formulas into an automaton
with a preorder over the acceptance conditions. To synthesize
a most preferred policy in a stochastic environment,
we utilized stochastic ordering to translate a partially-
ordered user’s preference to a preorder over probabilistic
distributions over the system trajectories. This allowed us
to rank the policies based on the partially-ordered user’s
preference. Leveraging the automaton structure, we proved
that computing a most-preferred policy can be reduced to
finding a Pareto-optimal policy in a multi-objective MDP
augmented with the automaton states.

This work provides fundamental algorithms and princi-
pled approach for preference-based probabilistic planning
with partially-ordered temporal logic objectives in stochastic
systems. A direction for future work will be to extend
the planning with preference over temporal goals that are
satisfied in infinite time, for instance, recurrent properties
and other more general properties in temporal logic. For
robotic applications, it would be of practical interest to
design a conversational-AI interface that elicits human pref-
erences and translating natural language specifications into
the preference model, and thus facilitate human-on-the-loop
planning.
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