
CSC 590, CSC 690 – Data Analytics
Exam #3, Fall 2024

First/Given Name:

Last/Family Name:

This exam contains 6 pages (including this cover page) and 5 questions.

• Clearly identify your answer for each problem, and
try to organize your work in a reasonably coherent
way, in the space provided. If you decided to use the
back of a paper, note this clearly so the instructor
can find your answer.

• Partial credit will be given for incorrect or incomplete
answers that show a partial understanding of the rel-
evant concepts. Irrelevant and meaningless answers
will not receive partial credit.

• No electronic devices, including calculators, are al-
lowed.

• Each student is allowed to use only a cheat sheet of
size 8.5′′×5.75′′, which is equivalent to a half of a
standard letter-sized paper. The cheat sheet can be
used on both sides. Only handwritten cheat sheets
are allowed, and each student is required to write
their name on their cheat sheet. The cheat sheet
must be submitted along with the exam upon com-
pletion.

Question Points Score

1 1.00

2 2.00

3 2.00

4 2.00

5 2.00

Total: 9.00

I acknowledge that it is the responsibility of every student at Missouri State University to adhere to the
university’s policies on Student Academic Integrity. I confirm that I have neither given nor received any
unauthorized assistance during this exam.

Signature:

CSC 590, CSC 690 - Exam #3 Name: Page 2 of 6

1. (1.00 points) Indicate whether the following statements are true or false.

(a) Spark provides a fault tolerant mechanism for RDDs but not for DataFrames.

False.

RDDs are used underneath, as a DataFrame is a RDD of Rows. Thus, the RDD lineage is still
there to provide fault tolerance.

(b) DataFrames are not immutable.

False.

DateFrames and RDDs cannot be modified. One can create a new one from each by applying
transformations.

(c) The following code is not Lazy.

df2 = df.count ()

True.

This is an action, and thus, it will be executed immediately.

(d) The following code is not Lazy.

df2 = df.groupBy("module").count ()

False.

When the count() operation is applied to GroupedData (i.e., after a groupBy()), it behaves as a
transformation rather than an action. Recall that transformations are lazy.

Page 2 of 6 Points earned for this question:

CSC 590, CSC 690 - Exam #3 Name: Page 3 of 6

2. Consider a DataFrame df whose content is as follows.

+----+---+----------+------+

|name|age|profession|salary|

+----+---+----------+------+

| Kia| 24| engineer| 50000|

| Zoe| 30| teacher| 60000|

|Amir| 28| engineer| 70000|

| Eva| 24| accountant| 40000|

| Leo| 28| teacher| 50000|

+----+---+----------+------+

(a) (1.00 points) What is the output of the following code?

df.selectExpr("name", "age -20 as years", "salary")\

.filter("salary >= 50000")\

.sort("years").show()

Solution:

+----+-----+------+

|name|years|salary|

+----+-----+------+

| Kia| 4| 50000|

|Amir| 8| 70000|

| Leo| 8| 50000|

| Zoe| 10| 60000|

+----+-----+------+

(b) (0.50 points) What is the output of the following code?

df.groupBy("profession").avg("age").show()

Solution:

+----------+--------+

|profession|avg(age)|

+----------+--------+

| teacher| 29.0|

| engineer| 26.0|

|accountant| 24.0|

+----------+--------+

(c) (0.50 points) What is the output of the following code?

df.orderBy (["age", "salary"], ascending =[False , True]).show()

Solution:

+----+---+----------+------+

|name|age|profession|salary|

+----+---+----------+------+

| Zoe| 30| teacher| 60000|

| Leo| 28| teacher| 50000|

|Amir| 28| engineer| 70000|

| Eva| 24| accountant| 40000|

| Kia| 24| engineer| 50000|

+----+---+----------+------+

Page 3 of 6 Points earned for this question:

CSC 590, CSC 690 - Exam #3 Name: Page 4 of 6

3. Consider two data frames with marks for different students:

df_590 = spark.createDataFrame ([("Ari", 60), ("Joe", 70), ("Mia", 80)],

["name", "CSC590"])

df_333 = spark.createDataFrame ([("Ari", 80), ("Mia", 70), ("Eva", 60)],

["name", "CSC311"])
(a) (0.50 points) What is the output of the following code? Draw the tables.

df_590.show()

df_333.show()

Solution:

+----+------+

|name|CSC590|

+----+------+

| Ari| 60|

| Joe| 70|

| Mia| 80|

+----+------+

+----+------+

|name|CSC311|

+----+------+

| Ari| 80|

| Mia| 70|

| Eva| 60|

+----+------+

(b) (0.75 points) Fill in the blanks of the following instruction so that the output of df.show() is the
table shown below.

df = __________.join(_________ , "name", "_______________")

df.show()

+----+------+------+

|name|CSC311|CSC590|

+----+------+------+

| Ari| 80 | 60 |

| Eva| 60 | NULL |

| Joe| NULL | 70 |

| Mia| 70 | 80 |

+----+------+------+

Solution:

df = df_333.join(df_590 , "name", "outer")

(c) (0.75 points) What is the output of the following code?

def g(col , val):

return sql_f.when(col.isNull (), 0).otherwise(val)

df.withColumn("x", (g(df.CSC311 , df.CSC311)+g(df.CSC590 , df.CSC590))/

(g(df.CSC311 , 1)+g(df.CSC590 , 1))).show()

Solution:

+----+------+------+----+

|name|CSC311|CSC590| x|

+----+------+------+----+

| Ari| 80| 60|70.0|

| Eva| 60| NULL |60.0|

| Joe| NULL| 70|70.0|

| Mia| 70| 80|75.0|

+----+------+------+----+

Page 4 of 6 Points earned for this question:

CSC 590, CSC 690 - Exam #3 Name: Page 5 of 6

4. Consider a data frame df constructed by the following instruction:

df = spark.createDataFrame ([

Row(name="Ezra", cards=["discover", "chase"], info={"age": 20, "profession": "

student"}),

Row(name="Reza", cards=["chase"], info={"profession": "engineer", "age": 22}),

Row(name="Alex", cards=["chase", "city", "discover"], info={"age": 20}),

Row(name="Mia", cards=[], info={"age": 22, "profession": "engineer"}),

Row(name="Lili", cards=["citi"], info={"age": 24, "profession": "student"})

])

(a) (0.50 points) What is the output of the following code? Draw the tables.

df.select("name", sql_f.explode(df.cards).alias("card")).show()

Solution:

+----+--------+

|name| card|

+----+--------+

|Ezra|discover|

|Ezra| chase|

|Reza| chase|

|Alex| chase|

|Alex| city|

|Alex|discover|

|Lili| citi|

+----+--------+

(b) (0.75 points) What is the output of the following code? Draw the tables.

df2 = df.select("name", sql_f.explode(df.info).alias("key", "value")).show()

Solution:

+----+----------+--------+

|name| key| value|

+----+----------+--------+

|Ezra|profession| student|

|Ezra| age| 20|

|Reza|profession|engineer|

|Reza| age| 22|

|Alex| age| 20|

| Mia|profession|engineer|

| Mia| age| 22|

|Lili|profession| student|

|Lili| age| 24|

+----+----------+--------+

(c) (0.75 points) What is the output of the following code?

df2.select("name", "value").filter("key=’profession ’").groupBy("name").pivot("

value").count().show()

Solution:

+----+--------+-------+

|name|engineer|student|

+----+--------+-------+

|Reza| 1| NULL|

| Mia| 1| NULL|

|Ezra| NULL| 1|

|Lili| NULL| 1|

+----+--------+-------+

Page 5 of 6 Points earned for this question:

CSC 590, CSC 690 - Exam #3 Name: Page 6 of 6

5. Consider a DataFrame df as follows.

+----+---+-----+----------+

|name|GPA|class|department|

+----+---+-----+----------+

| Ami |3.0| 2024| MTH|

| Eva |3.4| 2026| MTH|

|Alex |3.4| 2024| COMP|

|Lisa |3.6| 2026| COMP|

| Eli |2.9| 2026| MTH|

|Kate |3.5| 2027| COMP|

|Nova |3.0| 2024| COMP|

|Levi |3.6| 2024| MTH|

+----+---+-----+----------+

(a) (1.00 points) Write code that computes the average GPA of students for each department and class.
The output should look like this:

+----------+-----+--------+

|department|class|avg(GPA)|

+----------+-----+--------+

| COMP| 2026| 3.6|

| MTH| 2026| 3.15|

| COMP| 2024| 3.2|

| MTH| 2024| 3.3|

| COMP| 2027| 3.5|

+----------+-----+--------+

Solution:

df.groupBy("department", "class").avg("GPA").show()

(b) (1.00 points) Write code that computes a DataFrame that contains all students in each class whose
GPAs are less than the average GPA of students in that class. The output of your code should look
like the following.

+-----+------------------+----+---+----------+

|class| avg_gpa|name|GPA|department|

+-----+------------------+----+---+----------+

| 2024| 3.25| Ami |3.0| MTH|

| 2026|3.3000000000000003| Eli |2.9| MTH|

| 2024| 3.25| Nova |3.0| COMP|

+-----+------------------+----+---+----------+

Solution:

df2 = df.groupBy("class").agg(sql_f.avg("GPA").alias("avg_gpa"))

df3 = df2.join(df , "class").where("GPA < avg_gpa")

df3.show()

Page 6 of 6 Points earned for this question:

