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1. (1.00 points) Indicate whether the following statements are true or false.

(a) Spark provides a fault tolerant mechanism for RDDs but not for DataFrames.

False.

RDDs are used underneath, as a DataFrame is a RDD of Rows. Thus, the RDD lineage is still
there to provide fault tolerance.

(b) DataFrames are not immutable.

False.

DateFrames and RDDs cannot be modified. One can create a new one from each by applying
transformations.

(c) The following code is not Lazy.

df2 = df.count ()

True.

This is an action, and thus, it will be executed immediately.

(d) The following code is not Lazy.

df2 = df.groupBy("module").count ()

False.

When the count() operation is applied to GroupedData (i.e., after a groupBy()), it behaves as a
transformation rather than an action. Recall that transformations are lazy.
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2. Consider a DataFrame df whose content is as follows.

+----+---+----------+------+

|name|age|profession|salary|

+----+---+----------+------+

| Kia| 24| engineer| 50000|

| Zoe| 30| teacher| 60000|

|Amir| 28| engineer| 70000|

| Eva| 24| accountant| 40000|

| Leo| 28| teacher| 50000|

+----+---+----------+------+

(a) (1.00 points) What is the output of the following code?

df.selectExpr("name", "age -20 as years", "salary")\

.filter("salary >= 50000")\

.sort("years").show()

Solution:

+----+-----+------+

|name|years|salary|

+----+-----+------+

| Kia| 4| 50000|

|Amir| 8| 70000|

| Leo| 8| 50000|

| Zoe| 10| 60000|

+----+-----+------+

(b) (0.50 points) What is the output of the following code?

df.groupBy("profession").avg("age").show()

Solution:

+----------+--------+

|profession|avg(age)|

+----------+--------+

| teacher| 29.0|

| engineer| 26.0|

|accountant| 24.0|

+----------+--------+

(c) (0.50 points) What is the output of the following code?

df.orderBy (["age", "salary"], ascending =[False , True]).show()

Solution:

+----+---+----------+------+

|name|age|profession|salary|

+----+---+----------+------+

| Zoe| 30| teacher| 60000|

| Leo| 28| teacher| 50000|

|Amir| 28| engineer| 70000|

| Eva| 24| accountant| 40000|

| Kia| 24| engineer| 50000|

+----+---+----------+------+
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3. Consider two data frames with marks for different students:

df_590 = spark.createDataFrame ([("Ari", 60), ("Joe", 70), ("Mia", 80)],

["name", "CSC590"])

df_333 = spark.createDataFrame ([("Ari", 80), ("Mia", 70), ("Eva", 60)],

["name", "CSC311"])
(a) (0.50 points) What is the output of the following code? Draw the tables.

df_590.show()

df_333.show()

Solution:

+----+------+

|name|CSC590|

+----+------+

| Ari| 60|

| Joe| 70|

| Mia| 80|

+----+------+

+----+------+

|name|CSC311|

+----+------+

| Ari| 80|

| Mia| 70|

| Eva| 60|

+----+------+

(b) (0.75 points) Fill in the blanks of the following instruction so that the output of df.show() is the
table shown below.

df = __________.join(_________ , "name", "_______________")

df.show()

+----+------+------+

|name|CSC311|CSC590|

+----+------+------+

| Ari| 80 | 60 |

| Eva| 60 | NULL |

| Joe| NULL | 70 |

| Mia| 70 | 80 |

+----+------+------+

Solution:

df = df_333.join(df_590 , "name", "outer")

(c) (0.75 points) What is the output of the following code?

def g(col , val):

return sql_f.when(col.isNull (), 0).otherwise(val)

df.withColumn("x", (g(df.CSC311 , df.CSC311)+g(df.CSC590 , df.CSC590))/

(g(df.CSC311 , 1)+g(df.CSC590 , 1))).show()

Solution:

+----+------+------+----+

|name|CSC311|CSC590| x|

+----+------+------+----+

| Ari| 80| 60|70.0|

| Eva| 60| NULL |60.0|

| Joe| NULL| 70|70.0|

| Mia| 70| 80|75.0|

+----+------+------+----+
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4. Consider a data frame df constructed by the following instruction:

df = spark.createDataFrame ([

Row(name="Ezra", cards=["discover", "chase"], info={"age": 20, "profession": "

student"}),

Row(name="Reza", cards=["chase"], info={"profession": "engineer", "age": 22}),

Row(name="Alex", cards=["chase", "city", "discover"], info={"age": 20}),

Row(name="Mia", cards=[], info={"age": 22, "profession": "engineer"}),

Row(name="Lili", cards=["citi"], info={"age": 24, "profession": "student"})

])

(a) (0.50 points) What is the output of the following code? Draw the tables.

df.select("name", sql_f.explode(df.cards).alias("card")).show()

Solution:

+----+--------+

|name| card|

+----+--------+

|Ezra|discover|

|Ezra| chase|

|Reza| chase|

|Alex| chase|

|Alex| city|

|Alex|discover|

|Lili| citi|

+----+--------+

(b) (0.75 points) What is the output of the following code? Draw the tables.

df2 = df.select("name", sql_f.explode(df.info).alias("key", "value")).show()

Solution:

+----+----------+--------+

|name| key| value|

+----+----------+--------+

|Ezra|profession| student|

|Ezra| age| 20|

|Reza|profession|engineer|

|Reza| age| 22|

|Alex| age| 20|

| Mia|profession|engineer|

| Mia| age| 22|

|Lili|profession| student|

|Lili| age| 24|

+----+----------+--------+

(c) (0.75 points) What is the output of the following code?

df2.select("name", "value").filter("key=’profession ’").groupBy("name").pivot("

value").count().show()

Solution:

+----+--------+-------+

|name|engineer|student|

+----+--------+-------+

|Reza| 1| NULL|

| Mia| 1| NULL|

|Ezra| NULL| 1|

|Lili| NULL| 1|

+----+--------+-------+

Page 5 of 6 Points earned for this question:



CSC 590, CSC 690 - Exam #3 Name: Page 6 of 6

5. Consider a DataFrame df as follows.

+----+---+-----+----------+

|name|GPA|class|department|

+----+---+-----+----------+

| Ami |3.0| 2024| MTH|

| Eva |3.4| 2026| MTH|

|Alex |3.4| 2024| COMP|

|Lisa |3.6| 2026| COMP|

| Eli |2.9| 2026| MTH|

|Kate |3.5| 2027| COMP|

|Nova |3.0| 2024| COMP|

|Levi |3.6| 2024| MTH|

+----+---+-----+----------+

(a) (1.00 points) Write code that computes the average GPA of students for each department and class.
The output should look like this:

+----------+-----+--------+

|department|class|avg(GPA)|

+----------+-----+--------+

| COMP| 2026| 3.6|

| MTH| 2026| 3.15|

| COMP| 2024| 3.2|

| MTH| 2024| 3.3|

| COMP| 2027| 3.5|

+----------+-----+--------+

Solution:

df.groupBy("department", "class").avg("GPA").show()

(b) (1.00 points) Write code that computes a DataFrame that contains all students in each class whose
GPAs are less than the average GPA of students in that class. The output of your code should look
like the following.

+-----+------------------+----+---+----------+

|class| avg_gpa|name|GPA|department|

+-----+------------------+----+---+----------+

| 2024| 3.25| Ami |3.0| MTH|

| 2026|3.3000000000000003| Eli |2.9| MTH|

| 2024| 3.25| Nova |3.0| COMP|

+-----+------------------+----+---+----------+

Solution:

df2 = df.groupBy("class").agg(sql_f.avg("GPA").alias("avg_gpa"))

df3 = df2.join(df , "class").where("GPA < avg_gpa")

df3.show()
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