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Abstract Combinatorial filters, which take the form of labelled transition
graphs, are a general representation for filtering and inference tasks in robotics.
They are of particular interest in contexts where the objective is to minimize
the computational resources needed to execute the filter. One specific problem
is called the filter minimization (FM) problem, in which the goal is to find, for
a given original filter, a state-minimal filter equivalent to the original filter.
We consider a special case of FM, called the filter partitioning minimization
(FPM) problem, in which the reduced filter must partition the state space of
the original filter. This problem has been proven to be NP-hard. This paper
considers the practical problem of solving FPM in spite of these hardness
results. In contrast to the best known algorithm for this problem, a heuristic
approach based on graph coloring proposed by O’Kane and Shell, we show
how to convert an FPM instance to an instance of the well-known integer
linear programming (ILP) problem. We present three distinct formulations of
this reduction. Though ILP is itself a challenging problem, reducing FPM to
ILP has the advantage that the ILP problem has been studied in great detail,
and highly-optimized solvers are readily available. We describe experiments
comparing this approach to the heuristic algorithm of O’Kane and Shell. The
results show that the proposed ILP technique performs better in computing
exact solutions as the filter sizes grow, and that the ILP approach obtains
higher-quality feasible solutions, in contexts where time limitations prohibit
the computation of exact solutions.
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1 Introduction

Combinatorial filters, which are formulated as labelled transition graphs, are
used for modeling and reasoning about systems in which sensor data is discrete.
This kind of filters was originally proposed by LaValle [15, 16] for reasoning
about the information requirements of problems in robotics.

Figure 1 shows an example of how such filters might be used in the context
of mobile robotics. Suppose a mobile robot navigates through its environment
guided by a topological map in the form of a generalized Voronoi diagram
(GVG) [24, 30]. See Figure 1a. The robot is equipped with controllers [6] to
move reliably through the environment between the junction points of this
map. At each junction point, the robot can sense the relative directions of the
outgoing corridors, and select one of them to travel along next. The operation
of this robot can be expressed as a combinatorial filter, that is, a labeled
directed graph in which states are labeled with the filter’s output and edges
are labeled with observations received by the robot. Each state of the filter
corresponds to one of the junction points of the map (or, if the robot may be
uncertain about its location, a set of possible junctions) combined with a label
indicating the direction from which the robot arrived at the junctions. Each
state is labeled with the direction of the corridor the robot should travel next.
The directed edges correspond to the connectivity between junctions along
the environment’s corridors and are labeled with the observation the robot
should receive at the next junction it encounters. Notice, in particular, that
this graph is a model of the robot’s behavior in this environment —it describes
what the robot will do, rather than merely describing the environment itself.
Figure 1b and 1c show a smaller environment and a corresponding filter for
that environment, describing behavior in which the robot, starting from an
unknown location in the environment, nonetheless navigates to E.

The question we ask is this: How many states are necessary to complete a
task represented using this sort of filter? Such questions are relevant not only
for minimizing the computational resources needed to execute the filter, but
also for understanding the information structure underlying the problem itself.
For this example, Figure 1d shows the smallest filter that can replace the näıve
filter in Figure 1c and by which the system’s task can still be accomplished.

O’Kane and Shell [20] first addressed this problem of automatic reduction
of combinatorial filters. Specifically, they considered the algorithmic problem
of finding the smallest filter, measured by the number of states, whose behavior
is equivalent to a given input filter. They proved that this problem is NP-hard,
and also introduced a heuristic algorithm, which forms the minimal filter by
merging ‘compatible’ states. Their algorithm, in fact, solves FPM, a special
case of FM in which the reduced filter must partition the state space of the
original filter. This algorithm is (apart from näıve brute force) currently the
only known algorithm for FPM.

In this paper, we offer an alternative approach to filter partitioning min-
imization that improves upon the heuristic proposed by O’Kane and Shell.
The basic approach is a reduction to integer linear programming (ILP). We
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Fig. 1 a) An occupancy grid map of the UofSC Swearingen Engineering Center, generated
by a differential drive robot equipped with a Hokuyo laser range finder. The map is over-
laid with the generalized Voronoi graph (GVG) of that environment in red. b) A simpler
environment and its GVG for illustration purposes. c) A näıvely-constructed combinatorial
filter, which the robot can use to navigate, starting from full location uncertainty, to point
E. In this example, each vertex in the graph (that is, each state of the filter) is labeled with
a set of possible locations for the robot, each written in the form XY to mean that the
robot has arrived at junction X from junction Y . The states are also labeled with a color
or output from the filter at that state; in this example, the colors are angles (0, π/2, π, etc),
telling which outgoing corridor the robot show follow. The directed edges show how the
state changes in response to these movements. The labels on the edges show the information
made available to the robot on that transition — in this case, a list of options for which
direction to leave the next junction. For example, an edge labeled {π, π/2} means that the
robot observes two options for its next movement: It may follow a corridor to its left (π/2)
or it may turn around and return the way it came (π). A robot might execute this plan
by an alternating process of executing the movement attached to its current state, using its
sensors to acquire a new observation, and transitioning in the graph the state reached by
the outgoing edge whose label matches that observation. d) A reduced version of this filter,
in which several redundant states are merged. The reduction shows that the information
encoded in those different merged states was not, in fact, necessary, for the robot to behave
correctly.

consider three different integer linear programming formulations for the filter
partitioning minimization problem. None of these three formulations is fully
superior to one another, and each might be useful for minimizing certain types
of filters.
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After related work and basic definitions are reviewed and recalled respec-
tively in Sections 2 and 3, the paper makes two primary contributions: (i)
Section 4 presents three integer linear programming formulations for the fil-
ter partitioning minimization problem; (ii) Section 5 presents experimental
results, which show that the ILP formulation outperforms the algorithm of
O’Kane and Shell [21], for both optimal and feasible solutions of the filter par-
titioning minimization problem. Finally, Section 6 summarizes our conclusions
and discusses future work.

2 Related Work

Combinatorial filters [15,16] stem from early work about minimalism in robotics [7,
8]. This approach is based on the idea of identifying minimal configurations
of resources such as sensing, actuation, and computation that enable a task
to be completed. It has been applied to such tasks as exploration [14], naviga-
tion [17,25,27], localization [1], target tracking [2, 29], manipulation [13], and
story validation [28].

The combinatorial filters considered in this paper are closely related to
well-known probabilistic filtering methods such as recursive Bayesian estima-
tion [9, 18] and Kalman filtering [12]. Each of these types of filters are used
to estimate a system’s internal state over time using the most recent data
(observations) received from the sensors. Note in particular that probabilistic
filters, when implemented with finite precision, can in principle be expressed
as combinatorial filters, in which each state of the filter corresponds to a tuple
of concrete values of the variables being estimated and each transition encodes
the updates made to that internal state in response to new sensor data. In ad-
dition, combinatorial filters are also suitable for other forms of filtering that
rely upon combinatorial, rather than probabilistic reasoning. For more details
about Bayesian filtering and the Kalman filter, see [5].

Apart from offering the advantage of using less computational resources,
finding optimal filters in terms of the number of states also helps us better
understand the nature of robotic problems, because minimal filters can reveal
the minimal information required to solve those problems.

The problem of automatically constructing optimal filters from given orig-
inal filters, called the filter minimization problem, was first considered by
O’Kane and Shell [20]. They proved that the problem is NP-hard, and pre-
sented a heuristic algorithm, which solves the problem by merging pairs of
‘mergeable’ states. Saberifar et al. [23] proved that the problem is hard to
approximate, even for several reasonable special cases of combinatorial filters.
Our own prior work [22] considered reducing filters through making quotient
filters under equivalence relations. We proved that the well-known notion of
bisimulation for those equivalence relations does not always lead to optimally
reduced filters. Quite recently, Zhang and Shell [31] introduced a generaliza-
tion of combinatorial filters and their related minimization problem, which
also generalizes FM. They proved that an optimal solution to the FM for
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some filters cannot be found by partitioning the state space of the filter un-
der an equivalence relation but it always can be found by a covering of the
state space, meaning that some states are shared among several ‘classes’ of
mergeable states. Accordingly, they proposed an exact solution to FM via a
SAT formulation. The differences between our approach and their approach
are two: first, the problem we study here is a special case of FM, in which we
require the reduced filter to partition the state space of the original filter; and
second, the number of constraints of the SAT formulation is exponential to
the size of filter, while each of the ILP formulations has a polynomial number
of constraints. It is still not known if any SAT or programming formulation of
FM can be formed in a polynomial time or not. Because of the first difference,
our approach is comparable only with the heuristic algorithm of O’Kane and
Shell, which essentially solves FPM. Our approach can be used to compute
feasible solutions for large filters for which an optimal solution cannot be com-
puted in a reasonable amount of time. This is because we can efficiently form
any of the ILP formulations.

3 Definitions

This section presents basic definitions and notation used throughout the paper.
The basic object of study is the combinatorial filter, defined as follows [21]:

Definition 1 A combinatorial filter, or simply a filter, is a 6-tuple (V, Y, C, δ, c, v0)
in which:

– V is a finite set of states,
– Y is a set of possible observations, representing the input space of the filter,
– C is a set of outputs, sometimes called colors, representing the outputs

produced by the filter,
– δ : V × Y → V ∪ {⊥} is the transition function of filter,
– c : V → C is a function assigning to each state v ∈ V a color, and
– v0 ∈ V is the initial state.

We depict filters as edge labelled directed graphs, in which the states are
shown as vertices and the transition function determines the directed edges.
Examples appear in Figure 1 and Figure 2.

The meaning of δ(v, y) = ⊥ is that the observation y never occurs when the
filter is in state v. Equivalently, in graph view, vertex v has no outgoing edge
labeled y. This type of situation occurs when some structure in the problem
being modeled prevents that observation from that state.

An observation sequence s = y1y2 · · · yn ∈ Y ∗, in which each yi is a member
of Y , is said to be trackable from v ∈ V if there is a sequence of states
q0, q1, ..., qn such that q0 = v, and δ(qi, yi+1) = qi+1 for all 0 ≤ i < n. In this
situation, we use δ∗(v, s) to mean the state reached to when s is traced starting
from v. If s is not trackable from v, we write δ∗(v, s) = ⊥. By convention, the
empty string ε is trackable for all states v, i.e., δ∗(v, ε) = v.
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Additionally, the set of all observation sequences trackable from a state v
is called as the language of v, denoted by L(v). Accordingly, the language of
F , denoted by L(F ), is the language of its initial state, i.e., L(F ) = L(v0).

Filter reduction relies on the following definition.

Definition 2 Let F1 = (V1, Y, C, δ1, c1, v0) and F2 = (V2, Y, C, δ2, c2, w0) be
two filters and L ⊆ Y ∗ be an observation language. We say that F1 is equivalent

to F2 with respect to L, denoted F1
L
== F2, if for any observation sequence s ∈ L,

1. δ∗1(v0, s) 6= ⊥,
2. δ∗2(w0, s) 6= ⊥, and
3. c1(δ∗1(v0, s)) = c2(δ∗2(w0, s)).

This definition requires that L ⊆ L(F1) and L ⊆ L(F2), and that for any
observation sequence in L, F1 and F2 must produce the same output. Note
that this definition does not require that L(F1) to be equal to L(F2). We also
require that the state space of the minimized filter has a special property in
the sense of the following definition.

Definition 3 Let F1 = (V1, Y, C, δ1, c1, v0) and F2 = (V2, Y, C, δ2, c2, w0) be
two filters. Denoted F1 $ F2, we say that F2 partitions the state space of F1

if for each v ∈ V1, there is a single state w ∈ F2 such that for any observation
sequence s ∈ Y ∗, if δ∗1(v0, s) = v, then δ∗2(w0, s) = w.

The filter partitioning minimization problem, on which this work elabo-
rates, is defined thusly:

Problem: Filter partitioning minimization (FPM)

Input: A filter F .

Output: A filter F ∗ such that F
L(F )
==== F ∗ and F $ F ∗ and the number

of states in F ∗ is minimum.

Informally, the intuition of filter partitioning minimization is to produce
for a given filter F , a state minimal filter F ∗ that traces all observation se-
quences of L(F ) while producing for each of them, the same output produced
by the original filter F . Since this minimized filter F ∗ would produce the same
outputs as F for any observation sequence trackable by F and that F ∗ parti-
tions the state space of F , we can view F ∗ as a sort of optimal replacement
for F with any state in F ∗ plays the role of one or more states in F . Note
that FM is similar to FPM but it lacks the condition F $ F ∗ in its output.
The next section casts this problem as an integer linear programming problem
with three different formulations.

4 ILP formulations of the FPM problem

In this section, we introduce three integer linear programming models for filter
partitioning minimization. To do so, we first review how filter reduction relates
to quotient operations.
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4.1 Filter reduction as a quotient operation

The idea of these formulations stems from our previous work [22], in which we
proved that an optimal filter can formed by taking the quotient of the original
filter under some equivalence relation over the state space of the original filter.
Assuming that one has the correct relation, for each equivalence class of that
relation, all of the states in that class are merged to form a single state in the
reduced filter.

In our prior work, we provide conditions on the relation under which the
quotient operation produces a well-defined filter. Specifically, the relation must
be a compatibility relation, defined as follows:

Definition 4 Let F = (V, Y, C, δ, c, v) be a filter. We say that a relation R ⊆
V × V is a compatibility relation for F , if for any (v, w) ∈ R:

1. c(v) = c(w), and
2. for any y ∈ Y , if δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥, then (δ(v, y), δ(w, y)) ∈ R.

We say state v is compatible with w if there exists a compatibility relation
R for F such that (v, w) ∈ R. The set of all compatible pairs for a given filter
F is denoted by fF , which is the union of all compatibility relations for F
and itself is a compatibility relation for F . For a simple efficient algorithm
computing fF , see [22].

To illustrate, consider filter F1 in Figure 2. Some compatibility relations for
this filter areR1 = ∅,R2 = IF1

,R3 = {(4, 5), (7, 7)},R4 = {(2, 3), (0, 1), (3, 4)},
and R5 = IF1 ∪ {(2, 3), (3, 2), (0, 1), (1, 0), (3, 4), (4, 3), (4, 5), (5, 4)}, where IF1

denotes the identity relation on the state space of F1. Observe that fF1 = R5.
Given a relation that is both a compatibility relation and an equivalence

relation, we can form a quotient filter, which merges equivalent states:

Definition 5 For a filter F = (V, Y, C, δ, c, v0), and a relation R ⊆ V × V
that is both a compatibility relation and an equivalence relation (a compat-
ibility equivalence relation), the quotient of F under R is the filter F/R =
(V/R, Y,C, δ′, c′, [v0]R), in which

δ′([v]R, y) =

{
[δ(w, y)]R if ∃w ∈ [v]R with δ(w, y) 6= ⊥
⊥ otherwise

and c′([v]R) = c(v).

Notice that Definition 4 ensures that if two states v and w, both of which
have an outgoing edge labeled by an observation y, are merged then their
‘y-successors’ —δ(v, y) and δ(w, y)— must also be merged.

The following result holds the key to using this quotient operation to reduce
filters.

Lemma 1 [22] For any filter F = (V, Y, C, δ, c, v0), and any compatibility

equivalence relation R for F , we have F
L(F )
==== F/R and that F1 $ F2.
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Fig. 2 a) Filter F1. States in the left column have color 1, states in the middle column
have color 2, state 6 has color 3, and state 7 has color 4. b) The compatibility enforcement
graph of filter F1. c) A minimal filter equivalent to F1.

This upshot is that, if the relation R in Lemma 1 has the minimum num-
ber of equivalence classes, then it is guaranteed that F/R is a minimal filter
equivalent to F . As a result, the FPM problem is reduced to the following
problem:

Problem: Minimum-partition compatibility equivalence relation
(MPCER)

Input: A filter F .
Output: A compatibility equivalence relation for F with a minimum num-

ber of equivalence classes.

Note that, due to Lemma 1, any feasible solution to the MPCER problem
identifies a feasible solution to the FPM problem. Thus, even if we can find
only a feasible (rather than optimal) solution to MPCER, we can still use
that feasible solution to find a feasible solution to the corresponding FPM
instance. The ILP models introduced below are constructed by leveraging this
connection between FPM and MPCER.

4.2 Assignment-based ILP

Our first formulation of FPM as an ILP is inspired by the classical ILP for
the graph coloring problem [11, 19]. To describe this formulation, we first de-
scribe how to cast the problem as a mathematical program that happens to
contain some nonlinear constraints. Then we show how to linearize those con-
straints to form an ILP and describe some simple optimizations that reduce
the complexity of the program.

4.2.1 Nonlinear optimization formulation

In this approach, each state of F is assigned to a label from a set of n = |V |
labels 1, . . . , n. These labels form an equivalence relation on V by relating
pair of states that are assigned to the same label. Considering this, in the
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formulation, for any state v and an integer 1 ≤ j ≤ n, a binary variable xvj
is introduced. This variable receives value 1 if state v is assigned to label j,
and it receives 0 otherwise. Furthermore, n binary variables p1, p2, . . . , pn are
introduced, where for each integer 1 ≤ j ≤ n, variable pj receives value 1
if label j is used for some state in the assignment, or it receives 0 otherwise.
Accordingly, the MPCER problem with input F can be solved via the following
(nonlinear) mathematical programming model.

Minimize: n∑
j=1

pj (1)

Subject to:

– For all v ∈ V ,
n∑
j=1

xvj = 1. (2)

– For all j ∈ {1, . . . n} and all v, w ∈ V such that v 6fFw,

xvj + xwj ≤ pj . (3)

– For all v, w ∈ V and all y ∈ Y such that δ(v, y) 6= ⊥ and δ(w, y) 6= ⊥,
n∑
j=1

xvjxwj ≤
n∑
k=1

xδ(v,y)kxδ(w,y)k. (4)

– For all v ∈ V and all j ∈ {1, . . . , n},
pj ∈ {0, 1} and xvj ∈ {0, 1}. (5)

The objective function of this model minimizes the number of labels that
are used. That is, it minimizes the size of the partition specified by the assign-
ment. Observe that constraints of type (2) ensure that each state of the filter
is assigned to one and only one label.

Thus, to see that an optimal solution to this program would yield an opti-
mally reduced filter, we need only to verify that the relation induced by the xvi
variables is indeed a compatibility equivalence relation. We write R to denote
this relation, defined as

R = {(v, w) | xv,j = xw,j = 1 for some 1 ≤ j ≤ n}. (6)

The fact that R is an equivalence relation follows directly from this defini-
tion.

Constraints of types (3) and (4) together guarantee that R must be a
compatibility relation in the sense of Definition 4:

– By the constraints of type (3), if two states v and w are not compatible,
then to any label j, at most one of the states v or w is assigned. Therefore,
it prevents states x and y from being related by R. Thus, R ⊆ fF . But,
relation fF does not relate states of different colors, and thus, relation R
satisfies the first part of Definition 4.
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– The constraints of type (4) ensure that if xvjxwj = 1 for a j —that is,
if both xvj = 1 and xwj = 1— then xδ(v,y)kxδ(w,y)k = 1 for some k.
This means that if v and w are merged (related by R), then δ(v, y) and
δ(w, y) must also be merged. Thus, relation R satisfies the second part of
Definition 4.

We conclude that a solution to this mathematical program does indeed induce
a compatibility equivalence relation R with a minimal number of equivalence
classes. Therefore, that relation can be used to solve MPCER, and therefore,
FPM.

4.2.2 Linearizing the constraints

This model has all the properties to be an integer linear program except that
constraints of type (4) are not linear. To linearize these constraints, we intro-
duce for each pair of states v, w ∈ V , two binary variables αvw and βvw, the
values of which are constrained as follows:

– For all v, w ∈ V and all j ∈ {1, . . . , n},
αvw ≥ xvj + xwj − 1, (7)

βvw ≥ xvj − xwj , (8)

αvw + βvw = 1, and (9)

αvw, βvw ∈ {0, 1}. (10)

According to these constraints, the variable αvw becomes 1 only when
xvj = xwj = 1 for a j. In this case, βvw receives 0. Consider that if for no j
it holds that xvj = xwj = 1, then no constraint of type (7) enforces αvw to
receive value 0 since in this case the only restrictions on αvw are αvw ≥ 0 and
αvw ≥ −1, not preventing αvw from receiving 1. In this case, however, it is
guaranteed that βvw gets value 1 by a constraint of type (8) because for a j
it holds that xvj = 1 and xwj = 0. Subsequently, constraint (9) makes αvw
receive 0.

Knowing that for each state pair v, w, the variable αvw takes value 1 when
and only when v and w are chosen to be merged, we can replace the inequality∑n
j=1 xvjxwj ≤

∑n
k=1 xδ(v,y)kxδ(w,y)k with the following inequality:

αvw ≤ αδ(v,y)δ(w,y) (11)

After these changes, the original formulation becomes a ILP.

4.2.3 Optimizing the ILP

Though we now have a correct ILP for FPM, there are several straightforward
changes that can make that program more efficiently solvable.

First, observe that the current formulation introduces two variables αvw
and βvw for each pair of states v and w, whether v and w can be merged or not.
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However, if we know that two states can never be merged, or even if merged,
they do not enforce via the second condition of Definition 4 any other pairs
to be merged, then we do not need to introduce this kind of extra variables
for them, and by doing so, we may help the solver to eliminate a considerable
amount of computations.

To identify pairs (v, w) for which we require variables αvw and βvw, we
first construct an auxiliary graph, denoted by G′ = (V ′, E′), which we call
the compatibility enforcement graph for F . To construct that graph, we set
V ′ = {vw | v 6= w and v fF w}. Then, for each pair of distinct vertices
vw, rz ∈ V ′, if for some y ∈ Y it holds that δ(v, y) = r and δ(w, y) = z, then
we add edge (vw, rz) to V ′. Finally, we remove the isolated vertices from V ′.

The vertices of this graph, V ′, are the pairs (v, w) for which we require
variables αvw and βvw. An edge (vw, rz) of this graph means that in making
a smaller filter, if states v is merged with state w, then state r must also be
merged with z. More precisely, if (v, w) ∈ R, then it must hold that (r, z) ∈ R.

To illustrate, consider again filter F1 in Figure 2. The compatibility en-
forcement graph of this filter is shown in Figure 2b. Notice that although
states 4 and 5 are compatible, the graph does not have a vertex 45 since even
if they are merged they do not enforce any other pair of states to be merged
through the second condition of Definition 4.

Second, we add two additional types of constraints (21 and 22 below) are
intended to reduce symmetry, as suggested by Méndez-Dı́az and Zabala [11].
The final assignment-based ILP, combining each of these elements appears
below.

Minimize: n∑
j=1

pj (12)

Subject to:

– For all v ∈ V ,
n∑
j=1

xvj = 1 (13)

– For all v, w ∈ V such that u 6fFw and for all j ∈ {1, . . . , n},
xvj + xwj ≤ pj . (14)

– For all v, w ∈ V such that vw ∈ V ′ and for all j ∈ {1, . . . , n},
αvw ≥ xvj + xwj − 1, (15)

βvw ≥ xvj − xwj . (16)

– For all v, w ∈ V such that vw ∈ V ′,
αvw + βvw = 1. (17)

– For all v, w, r, z ∈ V such that (vw, rz) ∈ E′,
αvw ≤ αrz. (18)
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– For all v ∈ V and for all all j ∈ {1, . . . , n},
xvj , pj ∈ {0, 1} (19)

– For all v, w ∈ V such that vw ∈ V ′

αvw, βvw ∈ {0, 1} (20)

– For all j ∈ {1, . . . , n}
pj ≤

∑
v∈V

xvj . (21)

– For all j ∈ {2, . . . , n}
pj ≤ pj−1. (22)

This formulation has |V |2 + |V | + 2|V ′| variables— |V |2 variables for x’s,
|V | variables for p’s, |V ′| variables for α’s, and |V ′| variables for β’s.

4.3 Representative ILP

Our second approach uses ideas based on those of Campêlo et al. [3,4]. Observe
that to make an equivalence relation on the state space of a filter F , we
can choose among the states, a set of distinct representatives so that each
equivalence class be represented by a representative and then assign each state
of the filter to a single representative (in the case that a state is chosen to be
a representative, then it can be assigned only to itself). Also consider that
one necessary condition for that equivalence relation to be a compatibility
relation is that a state cannot be assigned to a representative with which
is not compatible. More precisely, any state v ∈ V can be represented only
by those states that are in S(v) where S(v) = {u | (u, v) ∈ fF }. Observe
that v itself is in S(v). Given these, in the representative ILP formulation
of FPM problem, for any state v and any state u ∈ S(v), a binary variable
xuv is defined. This variable receives 1 if v is represented by u, and receives
0 otherwise. Moreover, similar to the assignment-based formulation, for each
state pair v, w ∈ V such that vw ∈ V ′, two binary variables αvw and βvw are
introduced. If v and w are assigned to the same representative, then variable
αvw receives value 1, while βvw receives value 0. Otherwise, αvw receives value
0 and βvw receives value 1.

These three kinds of variables participate in the representative ILP formu-
lation of the MPCER problem as follows:

Minimize: ∑
u∈V

xuu (23)

Subject to:

– For all v ∈ V , ∑
u∈V

xuv = 1. (24)



Title Suppressed Due to Excessive Length 13

– For all v, w ∈ V such that u 6fFw and for all u ∈ S(v) ∩ S(w),

xuv + xuw ≤ xuu. (25)

– For all v, w ∈ V such that vw ∈ V ′ and for all u ∈ S(v) ∩ S(w),

αvw ≥ xuv + xuw − 1, (26)

βvw ≥ xuv − xuw. (27)

– For all v, w ∈ V such that vw ∈ V ′,
αvw + βvw = 1. (28)

– For all v, w, r, z ∈ V such that (vw, rz) ∈ E′,
αvw ≤ αrz. (29)

– For all v ∈ V and for all all u ∈ S(v),

xuv ∈ {0, 1} (30)

– For all v, w ∈ V such that vw ∈ V ′

αvw, βvw ∈ {0, 1} (31)

The objective function of this formulation minimizes the number of repre-
sentatives and thus the number of equivalence classes induced by the solution.
While constraints of type (24) all together ensure all states are assigned to rep-
resentatives and that any state is assigned to exactly on representative, any
two incompatible states are prevented to be assigned to a single representative
by a constraint of type (25). The constraints involving αvw and βvw have a
similar meaning they had in their corresponding constraints of the assignment-
based ILP. Given the x’s part of a solution to this problem, the equivalence
relation R induced by x is as follows:

R = {(v, w) | ∃u ∈ S(v) ∩ S(w) s.t. xuv=xuw=1}. (32)

4.4 Partial-ordering based ILP

Our third formulation is similar to the approach of Jabrayilov and Mutzel [11],
who proposed a partial-ordering based ILP formulation of the graph coloring
problem. This approach is similar to the assignment-based approach in that
an equivalence relation over V is constructed by relating pairs of states that
are assigned the same label among a set of n labels 1, . . . , n. The difference,
however, is that in this approach, states are assigned labels indirectly (rather
than directly) via making a partial order on a set containing all states and
all labels. It is assumed that the sequence of labels is linearly ordered, and
accordingly, to make that said partial order, one can specify for each given
state v ∈ V and label j ∈ {1, . . . , n} that if v is greater than j, denoted v � j,
or v is smaller than j, denoted v ≺ j. Subsequently, for each state v and label
j ∈ {1, . . . , n}, two variables gjv and lvj are introduced. Variable gjv receives
value 1 if it is assumed that v � j, and receives value 0 otherwise. In contrast,
variable lvj receives value 1 if it is assumed that v ≺ j, and otherwise it receives
0. Based on these two kind of variables, state v is assigned label j if and only
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if gj,v = lv,j = 0, that is, when v is neither greater nor smaller than j. To
see the connection between these two kinds of variables and the variables of
assignment-based approach, one can think of xvj = 1 − (gj,v + lv,j). Also, in
this formulation an arbitrary state q ∈ V is chosen to assign the largest label
used in the assignment.

Finally, the partial-ordering base ILP for the MPCER problem is as follows:

Minimize:

1 +

n∑
j=1

gj,q (33)

Subject to:

– For all v ∈ V ,
lv,1 = 0, (34)

gn,v = 0. (35)

– For all v ∈ V and j ∈ {1, . . . , n− 1},
gj,v − gj+1,v ≥ 0, (36)

gj,v + lv,j+1 = 1, (37)

gj,q − gj,v ≥ 0. (38)

– For all v, w ∈ V such that v 6fw and for all j ∈ {1, . . . , n},
gj,v + lv,j + gj,w + lw,j ≥ 1. (39)

– For all v, w ∈ V such that vw ∈ V ′ and for all j ∈ {1, . . . , n},
αvw ≥ 1− gj,v − lv,j − gj,w − lw,j , (40)

βvw ≥ −gj,v − lv,j + gj,w + lw,j . (41)

– For all v, w ∈ V such that vw ∈ V ′,
αvw + βvw = 1. (42)

– For all v, w, r, z ∈ V such that (vw, rz) ∈ E′,
αvw ≤ αrz. (43)

– For all v ∈ V and for all all j ∈ {1, . . . , n},
gv,j , lj,v ∈ {0, 1} (44)

– For all v, w ∈ V such that vw ∈ V ′,
αvw, βvw ∈ {0, 1} (45)

Types (34) and (35) of constraints ensure that no state is less than label
1 and that no state is greater than label n, respectively. Constraints of type
(36)) and (37) all together make sure that each state is assigned a label.

Due to constraints of type (36), if a state v is greater than a label j + 1,
then it must also be greater than label j. By constraint of type (37) it is not
possible for a state to be greater than a label j and at the same time to be
smaller than label j + 1. Constraints of type (39) prevent incompatible states
from being assigned a single label. Those constraints that involve αvw and
βvw play the same role as in the previous two ILP formulation. The relation
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induced by a solution to this 0-1 model is as follows:

R = {(v, w) | ∃j s.t. gj,v = lv,j = gj,w = lv,j = 0}. (46)

5 Experimental Results

Next, we present some experimental results evaluating the performance of
these three formulations. The implementation is in Java, using Cplex to solve
ILPs, executed on an Ubuntu 16.04 computer with a 3.6GHz processor.

5.1 Experimental filters

We conducted tests using three kinds of filters. For comparison purposes, we
choose two of them to be ones on which previous work performed experiments.

The first kind consists of näıve filters for a family of the single-agent-donut
problem (Figure 3) by varying the number n of regions. This family of filters
was originally studied in [20].

The first part of this figure shows n beam sensors, numbered 1, . . . , n, that
partition a donut-shaped environment into n regions. In this environment, an
agent moves in an unpredictable but continuous path. When the agent passes
a beam sensor, the system can identify which one of the n beam sensors it
was, but cannot detect if the crossing was clockwise or otherwise. The task is
to make an alarm when it is completely sure that the agent is in region 1. For
this problem, the system can use a näıve filter, each state of which indicates a
set of possible regions in which the agent can be. Accordingly, the initial state
is the set of all regions 1, 2, . . . , n. For each state, we can draw an outgoing
edge whose label is a beam the system senses, and that edge goes to another
state whose set of regions are obtained by filtering in the source state, the set
of regions the robot can be.

For any n ≥ 3, the näıve filter that solves an instance of the single-agent-
donut problem with n regions has 2n + 1 states. To illustrate, see Figure 3b,
which shows the näıve filter for the case of n = 5. For any n ≥ 3, the optimal
filter has only 5 states, regardless of n. Figure 3c shows this optimal filter.

We also consider a family of two-agent-donut problems, which are similar
to single-agent-donut problems, but instead of a single agent, there are two
agents in the environment. This kind of problem was introduced by Tovar et
al. [26]. The goal is to determine, at any time, if the two agents are in the
same region or not. When an agent crosses a beam, the system can only
detect which beam sensors it was, but it can detect neither the direction of
crossing nor the identity of that agent.

The third family consists of randomly generated filters.
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Fig. 3 (a) A donut-shaped environment, in which an agent moves within n regions sepa-
rated by n beam sensors. When the robot crosses a beam, the system knows which sensor
it was, but it does not know the direction of that crossing. The task of the system is to
determine at any time whether the agent is definitely in region 1 or not. (b) A näıve filter
which is used to accomplish the task for an instance problem with n = 5 regions. (c) The
smallest filter the system can use to accomplish its task.

5.2 Algorithms to be compared

We compare 6 algorithms. Notice that in the assignment-based ILP and the
partial-ordering based ILP we set n = |V |. In those two ILPs, the value of
|V | is an upper bound for the number of labels used, or more precisely, for
the number of states in the reduced filter. Clearly, that upper bound works
for any filter. However, for input filters for which we know an upper bound
h < |V | on the number of states in the optimally reduced filter, then we can
use that upper bound and set n = h. By so doing, the number of variables
and constraints in the model may be considerably reduced. One way to obtain
this sort of h is to compute a feasible solution for the FPM problem using
a heuristic, efficient algorithm and then set h to the number of states of the
reduced filter. Clearly, the number of states of an optimally reduced filter will
be less than or equal to the number of states of a reduced filter computed by
that heuristic algorithm. In our experiments, we consider whether applying
this kind of bound helps or not.

We considered the following algorithms:

1. BFC: the heuristic algorithm of O’Kane and Shell [21] where conflict graphs
are colored by a brute force algorithm.

2. ASGB ILP: the assignment-based ILP (with n = |V |).
3. ASGB ILP+H: the assignment-based ILP with n = h, where h is a value

obtained by the heuristic algorithm of O’Kane and Shell, with conflicts
colored greedily.

4. PORB ILP: the partial-ordering based ILP (with n = |V |).
5. PORB ILP+H: a variation on PORB ILP using the n = h bound, analo-

gous to ASGB ILP+H.
6. REP ILP: The representative ILP.
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Fig. 4 The performance of the algorithms in computing optimal filters for: (top) näıve
filters of single-agent-donut instances, (bottom) näıve filters of two-agent-donut instances.
Notice that the vertical axis in both charts is in logarithmic scale. For each filter size, the
experiment was performed for only one filter of that size.

5.3 Computing optimal solutions

In this section, we compare the performance of the six algorithms in computing
optimally reduced filters.

5.3.1 Näıve filters of single-agent-donut instances

The chart in Figure 4-top depicts the result of this experiment, which was
performed on the näıve filters of instances of single-agent-donut problem where
the number of regions varied from 3 to 50 regions. BFC outperforms the ILP
based algorithms in computing optimal filters for very small filters, but is
rapidly outperformed by the ILP-based algorithms as the original filter sizes
grow. We also observed in this experiment that the use of a value obtained
by a heuristic algorithm as an upper bound helped ASGB ILP+H and PORB
ILP+H to perform better than their corresponding versions without seeds.
REP ILP did not perform well for this kind of filters.
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Fig. 5 The performance of the algorithms in computing optimal filters for random filters
for which the number of compatible pairs was linear to the number of states of the filter.
For each of the filter sizes, the plotted time is the average time to minimize the filter over 10
randomly generated filters of that size. If an algorithm could not find an optimal solution
for a filter on a given size in half an hour, then it was considered as a failure, and as a
result, the average time is not plotted. Note again that the vertical axis of the chart is in
logarithmic scale.

5.3.2 Näıve filters of two-agents-donut instances

Figure 4-bottom shows the results of this experiment. In a time limit of eight
hours, BFC could compute optimal filters only for instances with up to seven
regions. In the same time limit, ILP based algorithms could make optimal
filters for one more instance—an instance with eight regions. Consider that
although ILP based algorithm could solve only one more instance, the näıve
filter for the instance with 8 regions (which has 37 states) has 8 states more
than the näıve filter for 7 regions (which has 29 states).

5.3.3 Random filters with linear number of compatible pairs

In this experiment, we generated filters for which the number of distinct com-
patible pairs was less than 3|V |, and the compatibility enforcement graph had
both number of vertices and edges around |V |. The observation space and
color space upon which the filters are constructed has sizes of five and three,
respectively. For each state v and an observation y, on the basis of a proba-
bility of 1/2 it was chosen if v must have an outgoing edge labeled y or not,
and if yes, then the destination of that outgoing edge was chosen randomly
among the states of the filter. Figure 5 compares the performance of the al-
gorithms for this kind of filters. One notable result about this experiment is
that the representative ILP considerably outperformed the other algorithms.
This is because the REP ILP introduces a variables xuv only when u and v
are compatible. More precisely, the number of variables in the REP ILP model
was linear to the number of states of the filter, while the number of variables
of the other ILPs was quadratic to the number of states of the filter.
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Fig. 6 The trade-off chart of running time vs quality of solution of reduced filters found
by the algorithms on (top) the näıve filter of two-agents-donut problem with 13 regions
(bottom) the näıve filter of two-agents-donut problem with 15 regions. The former filter
has 92 states, and the later has 121 states.

5.4 Computing smaller filters

This section considers experiments that use ILP models for finding smaller
(rather than optimal) filters where optimal filters cannot be computed due to
lack of time. Especially, we are interested in trade-off between the time a solver
spends and the quality of a solution returned. Figure 6 presents the results of
our experiments on näıve filters of two instances of two-agents-donut problem,
which are considered difficult to minimize. Notice that each algorithm had 10
minutes to find best solutions it could. The heuristic algorithm with greedy-
random coloring was performed as many times as it could during 10 minutes.
As an example, this algorithm was performed 34749 rounds to find its best
solution on the näıve filter of two-agent-donut with 15 regions. Results shows
that although the heuristic algorithm can find good feasible solutions very
quickly, we can wait a fairly small amount of time for the ILPs to obtain
better solutions than those obtained by the heuristic algorithm.
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5.5 Discussion

In this section, we discuss a few observations we made. Our experiments show
that none of the three proposed ILP formulations is fully superior to one
another and that each one is useful for certain kind of filters. In particular, we
observed,

1. from the experiment on random filters (Section 5.3.3 and Figure 5), that the
representative ILP formulation is superior to the assignment-based ILP and
partial-ordering ILP for filters whose union of all compatibility relations is
not dense;

2. from the experiment on optimal filters for single-agent-donut problems
(Section 5.3.1 and Figure 4), that the assignment-based ILP and partial-
ordering ILP are superior to the representative ILP formulation for filters
whose union of all compatibility relations is dense;

3. from the experiment on random filters (Section 5.3.3 and Figure 5), that
the assignment-based ILP is superior to the partial-ordering ILP for filters
whose union of all compatibility relations is not dense; and

4. from the experiment on computing feasible solutions (Section 5.4 and Fig-
ure 6), that for filters that are hard to minimize, the partial-ordering ILP
finds feasible solutions faster than the assignment-based ILP.

The first two observations are supported by the fact that the number of vari-
ables in the representative ILP model is linear to the number of compatible
pairs of states, while the number of variables in the other two ILP models are
always quadratic to the number of states of the filter, regardless of the number
of compatible pairs of states.

To summarize, our results suggest several general rules of thumb for select-
ing the most appropriate ILP model.

– For filters that have a large number of colors relative to the number of
states, the representative ILP model is likely to outperform the other two
ILP models. Such filters might arise, for example, in state estimate set-
tings, where the filter should produce different outputs for each of its in-
ternal states. Likewise, if the number of observations is large relative to the
number of states, the representative ILP model also seems to outperform
the other models. This would be the case, for example, in robotic percep-
tion applications in which large amounts of partially redundant data are
available.

– For filters whose number of colors and observations are relatively small
compared to the number of states of the filter —notably, in cases where
the system is using sparse information to reason about long-term dynamics
of its environment, such as in some tracking problems— the assignment-
based and partial-ordering ILP models tend to fare better. In such cases,
our results suggest to use the assignment-based ILP if the number of states
of the filters is small, otherwise use the partial-ordering ILP.
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6 Conclusions

In this paper, we proposed the use of integer linear programming for automatic
reduction of combinatorial filters.

The filter partitioning minimization problem is known to be a difficult
problem to compute exact solutions for. Our experiments show that by using
the ILP technique, we can compute exact solutions for large filters for which
the brute force algorithm is unable to compute exact solutions. Even for large
filters for which we cannot compute an exact solution in a reasonable amount
time, we can still resort to the ILP technique to compute feasible solutions
that are smaller than those computed by the heuristic algorithm of O’Kane
and Shell [20]. Those smaller feasible solutions are unlikely to be computed
by randomized versions of the algorithm of O’Kane and Shell even if it is
executed thousands of times. This is because forming the equivalence class
must ‘globally’ find the ‘mergeable’ states while the algorithm of O’Kane and
Shell finds them ‘locally.’ In fact, their algorithm iteratively colors a sequence
of conflict graphs, at which step of which it is decided with which states, a
state must not merged, and that decision forces certain decisions to be made
at later steps.

Future work can consider designing metrics to measure the level of diffi-
culty of minimizing a given filter, which can be used for deciding an optimal
stopping time and deciding which one of the three ILP formulations is more
appropriate to use for a given filter. It can also consider computing strong
lower bounds, similar to a recent work by van Hoeve [10], who uses an idea
based on decision diagrams for computing lower bounds for the graph coloring
problem. Being able to efficiently compute strong lower bounds not only assists
accelerate proving optimally, but it also helps decide stopping time for filters
that are hard to minimize. Another consideration would be using a ‘better’
relation than the union of all compatibility relations in the ILP formulations.
One possibility would be the mergeability relation, a subset of the union of
all compatibility relations, which consists of only those pairs of compatible
states that are related by at least a compatibility equivalence relation. The
mergeability relation will serve a better mean to design a heuristic algorithm
on for estimating lower bounds, but experiments are required to see if it will
affect the quality of solutions or the performance of the ILPs. Another direc-
tion would be to apply machine learning techniques to optimize the use of the
current work, especially for computing lower and upper bounds and for learn-
ing an appropriate time at which the solver must stop in computing solutions
for difficult instances of filters.
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